Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = fine-piercing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6662 KiB  
Article
Fine-Structural Morphology of the Mouthparts of the Polyphagous Invasive Planthopper, Ricania speculum (Walker) (Hemiptera: Fulgoromorpha: Ricaniidae)
by Tiantian Gao, Jolanta Brożek and Wu Dai
Insects 2022, 13(9), 843; https://doi.org/10.3390/insects13090843 - 16 Sep 2022
Cited by 2 | Viewed by 2976
Abstract
Mouthparts are the crucial sensory and feeding organs associated with food detection and feeding in insects. The Asian ricaniid planthopper Ricania speculum (Walker), recently introduced into Europe, can cause severe economic damage by sucking the phloem sap of tea, camphor, citrus, black locust [...] Read more.
Mouthparts are the crucial sensory and feeding organs associated with food detection and feeding in insects. The Asian ricaniid planthopper Ricania speculum (Walker), recently introduced into Europe, can cause severe economic damage by sucking the phloem sap of tea, camphor, citrus, black locust and other plants using piercing-sucking mouthparts. To facilitate comprehensive understanding of feeding mechanisms in the Ricaniidae, the fine structure of the mouthparts of Ricania speculum was observed by scanning electron microscopy for the first time. The mouthparts are tubular, consist of a cone-shaped labrum, with a wrinkled epidermis and without sensilla; the tubular labium is divided into three segments: a slender stylet fascicle consisting of two mandibular stylets with four ridged processes and a row of longitudinal striations on the distal part of the outer surface; and two maxillary stylets with a smooth and sharp distal part, interlocked to form a larger food canal and a smaller salivary canal. On the labium, 15 kinds of sensilla of different functions were recognized. Two rows of short sensilla basiconica (SB I) are symmetrically distributed along the labial groove on the first segment. Two pairs of long sensilla basiconica (SB II) (proprioceptors) are on both sides of the labial groove at the junction of the second and third segments. A placoid, flattened sensillum (SPF) is symmetrically located laterally on the proximal end of the last segment and several flattened sensilla campaniformia (SFC) were visible on the ventral side on the second and third segments. The distribution of four types (I–IV) of sensilla cheatica of different lengths on the dorsal surface of the labium is significantly denser than on the lateral and ventral surfaces. The labial apex is divided into dorsal and ventral sensory fields, mainly including uniporous long peg sensilla (I), as well as smaller peg sensilla (II) and nonporous peg sensilla (PGSN) on each dorsal field. These nonporous sensilla basiconica (BSN I and III) occur on the ventral sensory fields and are constant in number and distribution. The nonporous sensilla basiconica (BSN II) are symmetrically arranged near the opening of the stylet fascicle similarly to two oval multiporous plate sensilla (OPSM). The sensilla arrangement is slightly different from that observed in previously studied Fulgoromorpha using scanning electron micrographs, which may reflect differences in feeding preference or behavior. Full article
(This article belongs to the Special Issue Feeding Organs in Hexapoda)
Show Figures

Figure 1

19 pages, 6791 KiB  
Article
Laboratory Study of Turbulent Mass Exchange in a Stratified Fluid
by Andrey G. Zatsepin, Valerii V. Gerasimov and Alexander G. Ostrovskii
J. Mar. Sci. Eng. 2022, 10(6), 756; https://doi.org/10.3390/jmse10060756 - 30 May 2022
Cited by 5 | Viewed by 2016
Abstract
In this study, a laboratory experiment was conducted to investigate quantitatively turbulent exchange between two quasi-homogeneous layers of equal thickness and different density (salinity), as well as the fine structure of the density transition zone (interface) between the layers. The fluid was continuously [...] Read more.
In this study, a laboratory experiment was conducted to investigate quantitatively turbulent exchange between two quasi-homogeneous layers of equal thickness and different density (salinity), as well as the fine structure of the density transition zone (interface) between the layers. The fluid was continuously stirred by a system of horizontally oscillating vertical rods, piercing through both layers and producing vertically homogeneous turbulent impact in a two-layered fluid. In every experimental run, the stirring process was carried out continuously from certain initial state up to the complete mixing of the layers. The buoyancy flux between the layers was estimated using the data on time changes of the salinity in both upper and lower layers. The fine structure of density interface was measured by vertically profiling conductivity microprobe. The results were presented in a dimensionless form and analyzed depending on two dimensionless parameters as follows: the Richardson number, Ri, and Reynolds number, Re. It was found that if Ri>RiRe where Ri is the critical Richardson number, the interface exists in “sharpening” mode and in “eroding” (diffusive) mode if Ri<RiRe. The maximum mixing efficiency was achieved at critical Richardson number, when the density interface was in a transition state between the sharpening and diffusive modes. Full article
(This article belongs to the Special Issue Technological Oceanography)
Show Figures

Figure 1

15 pages, 10592 KiB  
Article
Fabrication of Punch and Die Using Plasma-Assisted 3D Printing Technology for Piercing Sheet Metals
by Tatsuhiko Aizawa, Yohei Suzuki, Tomoaki Yoshino and Tomomi Shiratori
J. Manuf. Mater. Process. 2022, 6(3), 49; https://doi.org/10.3390/jmmp6030049 - 20 Apr 2022
Cited by 4 | Viewed by 3971
Abstract
A pair of punch and die was often fabricated using subtractive manufacturing processes such as milling and other machining processes. However, additive manufacturing could be used to perform the same processes. This study explored this possibility. In particular, this study fabricated a pair [...] Read more.
A pair of punch and die was often fabricated using subtractive manufacturing processes such as milling and other machining processes. However, additive manufacturing could be used to perform the same processes. This study explored this possibility. In particular, this study fabricated a pair of T-shaped punch and die made of AISI316L austenitic stainless steel using an additive manufacturing process called plasma-assisted 3D printing. Accordingly, T-shaped negative and positive 2D patterns were screen-printed onto the mirror-polished surfaces of the substrates made of AISI316L austenitic stainless steel. The printed film worked like a mask to prevent the printed substrate surfaces from nitriding. In order to form a thick nitrided layer, the unprinted substrate surfaces were selectively nitrided at 673 K for 14.4 ks. The un-nitrided segments of the substrates were uniformly removed by sand-blasting that involved shooting silica particles on the substrate’s surfaces. As a result, the substrates printed with negative and positive T-shaped patterns were transformed into the punch head and die cavity. In order to see the efficacy of the fabricated punch and die pair, this pair was used for piercing the electrical steel sheets under a controlled clearance. Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) was used to measure surface topography after piercing. In addition, SEM and a 3D profilometer were used to measure the punch and die profiles after piercing. The abovementioned measurement results showed that the fabricated punch and die exhibited highly accurate piercing behavior. Thus, the plasma-assisted 3D printing was useful for punch and die fabrication. Full article
Show Figures

Figure 1

15 pages, 12422 KiB  
Article
Quantitative Characterization of the Affected Zones in a Single Crystal Fe-6Si Steel Sheet by Fine Piercing
by Tatsuhiko Aizawa, Tomomi Shiratori, Tomoaki Yoshino, Yohei Suzuki and Kuniaki Dohda
Micromachines 2022, 13(4), 562; https://doi.org/10.3390/mi13040562 - 31 Mar 2022
Cited by 3 | Viewed by 2006
Abstract
An iron loss in the motor core was often enhanced by formation of plastically affected zones in piercing the electrical steel sheets. A platform methodology to carry out quantitative evaluation of these affected zones in the pierced electrical steel sheets was proposed to [...] Read more.
An iron loss in the motor core was often enhanced by formation of plastically affected zones in piercing the electrical steel sheets. A platform methodology to carry out quantitative evaluation of these affected zones in the pierced electrical steel sheets was proposed to search for the way to minimize the affected zone widths. A coarse-grained electrical steel sheet was employed as a work material for a fine piercing experiment under the narrowed clearance between the plasma-nitrided SKD11 punch and core-die. The shearing behavior by the applied loading for piercing was described by in situ measurement of the load-stroke relationship. The plastic straining in the single-crystal electrical steel sheet was characterized by SEM (scanning electron microscopy) and EBSD (electron back-scattering diffraction) to define the affected zone size and to analyze the rotation of crystallographic orientations by the induced plastic distortion during piercing. Integral and differentiation of spin rotation measured the affected zones. The effect of punch edge sharpness on these spin-rotation measures was also discussed using the nitrided and ion-milled SKD11 punch and core-die. Full article
(This article belongs to the Special Issue Micro and Nano Manufacturing (WCMNM 2021))
Show Figures

Figure 1

13 pages, 6076 KiB  
Article
Fine Piercing of Amorphous Electrical Steel Sheet Stack by Micro-/Nano-Textured Punch
by Yukiya Komori, Yohei Suzuki, Kohta Abe, Tatsuhiko Aizawa and Tomomi Shiratori
Materials 2022, 15(5), 1682; https://doi.org/10.3390/ma15051682 - 23 Feb 2022
Cited by 10 | Viewed by 2120
Abstract
The periodic nanotexture was superposed to the micro-textured grooves on the side surface of the punch. These grooves with nanotextures were shaped to have parallel and vertical orientations to the punch stroke direction, respectively. A stack of five amorphous electrical steel sheets was [...] Read more.
The periodic nanotexture was superposed to the micro-textured grooves on the side surface of the punch. These grooves with nanotextures were shaped to have parallel and vertical orientations to the punch stroke direction, respectively. A stack of five amorphous electrical steel sheets was punched out with these micro-/nano-textured punches. The process affected zone at the vicinity of the punched hole was analyzed by SEM (Scanning Electron Microscopy) and a three-dimensional profilometer. The punch surfaces were also observed by SEM to describe the debris particle adhesion on them. The dimensional change in each layer of the stack before and after perforation was measured to describe the punching behavior with the comparison to the punch diameter. Full article
Show Figures

Figure 1

21 pages, 6301 KiB  
Article
IONORING: Real-Time Monitoring of the Total Electron Content over Italy
by Claudio Cesaroni, Luca Spogli and Giorgiana De Franceschi
Remote Sens. 2021, 13(16), 3290; https://doi.org/10.3390/rs13163290 - 19 Aug 2021
Cited by 22 | Viewed by 4637
Abstract
IONORING (IONOspheric RING) is a tool capable to provide the real-time monitoring and modeling of the ionospheric Total Electron Content (TEC) over Italy, in the latitudinal and longitudinal ranges of 35°N–48°N and 5°E–20°E, respectively. IONORING exploits the Global Navigation Satellite System (GNSS) data [...] Read more.
IONORING (IONOspheric RING) is a tool capable to provide the real-time monitoring and modeling of the ionospheric Total Electron Content (TEC) over Italy, in the latitudinal and longitudinal ranges of 35°N–48°N and 5°E–20°E, respectively. IONORING exploits the Global Navigation Satellite System (GNSS) data acquired by the RING (Rete Integrata Nazionale GNSS) network, managed by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The system provides TEC real-time maps with a very fine spatial resolution (0.1° latitude x 0.1° longitude), with a refresh time of 10 min and a typical latency below the minute. The TEC estimated at the ionospheric piercing points from about 40 RING stations, equally distributed over the Italian territory, are interpolated using locally (weighted) regression scatter plot smoothing (LOWESS). The validation is performed by comparing the IONORING TEC maps (in real-time) with independent products: (i) the Global Ionospheric Maps (GIM) - final product- provided by the International GNSS Service (IGS), and (ii) the European TEC maps from the Royal Observatory of Belgium. The validation results are satisfactory in terms of Root Mean Square Error (RMSE) between 2 and 3 TECu for both comparisons. The potential of IONORING in depicting the TEC daily and seasonal variations is analyzed over 3 years, from May 2017 to April 2020, as well as its capability to account for the effect of the disturbed geospace on the ionosphere at mid-latitudes. The IONORING response to the X9.3 flare event of September 2017 highlights a sudden TEC increase over Italy of about 20%, with a small, expected dependence on the latitude, i.e., on the distance from the subsolar point. Subsequent large regional TEC various were observed in response to related follow-on geomagnetic storms. This storm is also used as a case event to demonstrate the potential of IONORING in improving the accuracy of the GNSS Single Point Positioning. By processing data in kinematic mode and by using the Klobuchar as the model to provide the ionospheric correction, the resulting Horizontal Positioning Error is 4.3 m, lowering to, 3.84 m when GIM maps are used. If IONORING maps are used as the reference ionosphere, the error is as low as 2.5 m. Real-times application and services in which IONORING is currently integrated are also described in the conclusive remarks. Full article
(This article belongs to the Special Issue Space Geodesy and Ionosphere)
Show Figures

Figure 1

14 pages, 4684 KiB  
Article
Femtosecond Laser Trimming with Simultaneous Nanostructuring to Fine Piercing Punch to Electrical Amorphous Steel Sheets
by Tatsuhiko Aizawa, Tomomi Shiratori, Yoshihiro Kira, Tomoaki Yoshino and Yohei Suzuki
Micromachines 2021, 12(5), 568; https://doi.org/10.3390/mi12050568 - 17 May 2021
Cited by 5 | Viewed by 2646
Abstract
A CVD (Chemical Vapor Deposition) diamond coated tungsten carbide (WC) and cobalt (Co) sintered alloy punch was trimmed by the femtosecond laser machining to sharpen its edge with about 2 μm and to simultaneously make nanostructuring to its side surface. In addition to [...] Read more.
A CVD (Chemical Vapor Deposition) diamond coated tungsten carbide (WC) and cobalt (Co) sintered alloy punch was trimmed by the femtosecond laser machining to sharpen its edge with about 2 μm and to simultaneously make nanostructuring to its side surface. In addition to the sharpened edge, its edge profile was formed to be homogeneous enough to reduce the damage layer width by piercing the electrical amorphous steel sheet stack. Each brittle sheet in the stacked work was damaged to have three kinds of defects by piercing; e.g., the droop-like cracking in the thickness and at the vicinity of hole, the wrinkling in peak-to-valley with partial cracking on the peaks, and the circumferential cracking. When using the WC (Co) punch with the inhomogeneous edge profile in the sharpened edge width, these three damages were induced into each sheet and the maximum damage width exceeded 80 μm. When using the punch with the sharpened edge and homogeneous edge profile, the wrinkling mode was saved and the total affected layer width was significantly reduced to less than 20 μm. Through the precise embossing experiments, this effect of punch edge profile condition to the induced damages was discussed with a statement on the nanostructuring effect on the reduction of damaged width in electrical amorphous steel sheets. The developed tool with the sharpened edge and homogenous edge condition contributes to the realization of a low iron loss motor with a reduced affected layer width. Full article
(This article belongs to the Special Issue Micro/Nano-surfaces: Fabrication and Applications)
Show Figures

Figure 1

12 pages, 16750 KiB  
Article
Simultaneous Nano-Texturing onto a CVD-Diamond Coated Piercing Punch with Femtosecond Laser Trimming
by Tatsuhiko Aizawa, Tomomi Shiratori, Yoshihiro Kira and Tadahiko Inohara
Appl. Sci. 2020, 10(8), 2674; https://doi.org/10.3390/app10082674 - 13 Apr 2020
Cited by 17 | Viewed by 3872
Abstract
In this study, a CVD (Chemical Vapor Deposition)-diamond coated tungsten carbide cobalt (WC (Co)) punch was trimmed to adjust its surface roughness and to significantly reduce its edge curvature for fine piercing by femtosecond laser processing. Through this laser trimming, the surface quality [...] Read more.
In this study, a CVD (Chemical Vapor Deposition)-diamond coated tungsten carbide cobalt (WC (Co)) punch was trimmed to adjust its surface roughness and to significantly reduce its edge curvature for fine piercing by femtosecond laser processing. Through this laser trimming, the surface quality of the diamond coating and the punch edge profile were improved to less than 0.5 μm at the maximum roughness and 2 μm in the edge width, respectively. In parallel with this improvement of surface quality, the side surface of the diamond coating was modified to include nano-textures via the LIPSS (Laser Induced Periodic Surface Structuring) process. Through the fine piercing process, this nanotexture was transcribed onto the pierced hole surface together with fine shearing of the hole by piercing. WLI (White-Light Interferometry) and SEM (Scanning Electron Microscopy) were utilized to describe this transcription of nanotextures during the piercing process. These semiregular nanotextures with an LIPSS period of 300 nm on the pierced hole surface induced a blue colored surface plasmon. Full article
(This article belongs to the Special Issue Micro/Nano Manufacturing II)
Show Figures

Figure 1

Back to TopTop