Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = field-road mode classification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 10270 KiB  
Article
ConvTEBiLSTM: A Neural Network Fusing Local and Global Trajectory Features for Field-Road Mode Classification
by Cunxiang Bian, Jinqiang Bai, Guanghe Cheng, Fengqi Hao and Xiyuan Zhao
ISPRS Int. J. Geo-Inf. 2024, 13(3), 90; https://doi.org/10.3390/ijgi13030090 - 14 Mar 2024
Cited by 1 | Viewed by 1788
Abstract
Field-road mode classification (FRMC) that identifies “in-field” and “on-road” categories for Global Navigation Satellite System (GNSS) trajectory points of agricultural machinery containing geographic information is essential for effective crop improvement. Most previous studies utilize local trajectory features (i.e., the relationships between a point [...] Read more.
Field-road mode classification (FRMC) that identifies “in-field” and “on-road” categories for Global Navigation Satellite System (GNSS) trajectory points of agricultural machinery containing geographic information is essential for effective crop improvement. Most previous studies utilize local trajectory features (i.e., the relationships between a point and its neighboring points), but they ignore global trajectory features (i.e., the relationships between the point and all points of the trajectory), leading to difficulty in improving the overall classification performance. The global trajectory features are useful for FRMC because they contain rich trajectory information (e.g., mode switching and motion tendency). Therefore, a ConvTEBiLSTM network-based method is proposed to improve the overall performance. Firstly, nine statistical features (e.g., speed and direction) are extracted from the original data and fed into the ConvTEBiLSTM network. Then, the ConvTEBiLSTM network combining the Bidirectional Long Short-Term Memory network, 1D Convolution network, and Transformer-Encoder network is used to extract and fuse local and global trajectory features. Finally, a linear classifier is applied to identify the “field” and “road” categories of GNSS points based on the fused features. Experimental results show that compared with the baselines, our method achieves the best accuracy and F1-score of 97.38% and 92.74% on our Harvester dataset, respectively. Full article
Show Figures

Figure 1

14 pages, 821 KiB  
Article
Overview of Intelligent Vehicle Infrastructure Cooperative Simulation Technology for IoV and Automatic Driving
by Zirui Ding and Junping Xiang
World Electr. Veh. J. 2021, 12(4), 222; https://doi.org/10.3390/wevj12040222 - 8 Nov 2021
Cited by 15 | Viewed by 4288
Abstract
This paper reviews the development of vehicle road collaborative simulation in the new era, and summarizes the simulation characteristics of two core technologies in the field of transportation after entering the era of Intelligent Networking: Internet of Vehicles technology and automatic driving technology. [...] Read more.
This paper reviews the development of vehicle road collaborative simulation in the new era, and summarizes the simulation characteristics of two core technologies in the field of transportation after entering the era of Intelligent Networking: Internet of Vehicles technology and automatic driving technology. This paper analyzes and compares the mainstream Internet of Vehicles (IoV) simulation and automatic driving simulation platforms on the market, deeply analyzes the model-based IoV simulation, and explores a new mode of IoV simulation in the era of big data. According to the latest classification standard of automatic driving in 2020, we summarize the simulation process of automatic driving. Finally, we offer suggestions on the development directions of intelligent network-connected vehicle simulation. Full article
(This article belongs to the Special Issue Intelligent Modeling and Simulation Technology of E-Mobility)
Show Figures

Figure 1

16 pages, 2541 KiB  
Article
Automatic Transportation Mode Recognition on Smartphone Data Based on Deep Neural Networks
by Francesco Delli Priscoli, Alessandro Giuseppi and Federico Lisi
Sensors 2020, 20(24), 7228; https://doi.org/10.3390/s20247228 - 17 Dec 2020
Cited by 13 | Viewed by 3357
Abstract
In the last few years, with the exponential diffusion of smartphones, services for turn-by-turn navigation have seen a surge in popularity. Current solutions available in the market allow the user to select via an interface the desired transportation mode, for which an optimal [...] Read more.
In the last few years, with the exponential diffusion of smartphones, services for turn-by-turn navigation have seen a surge in popularity. Current solutions available in the market allow the user to select via an interface the desired transportation mode, for which an optimal route is then computed. Automatically recognizing the transportation system that the user is travelling by allows to dynamically control, and consequently update, the route proposed to the user. Such a dynamic approach is an enabling technology for multi-modal transportation planners, in which the optimal path and its associated transportation solutions are updated in real-time based on data coming from (i) distributed sensors (e.g., smart traffic lights, road congestion sensors, etc.); (ii) service providers (e.g., car-sharing availability, bus waiting time, etc.); and (iii) the user’s own device, in compliance with the development of smart cities envisaged by the 5G architecture. In this paper, we present a series of Machine Learning approaches for real-time Transportation Mode Recognition and we report their performance difference in our field tests. Several Machine Learning-based classifiers, including Deep Neural Networks, built on both statistical feature extraction and raw data analysis are presented and compared in this paper; the result analysis also highlights which features are proven to be the most informative ones for the classification. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

28 pages, 16193 KiB  
Article
Towards Circumpolar Mapping of Arctic Settlements and Infrastructure Based on Sentinel-1 and Sentinel-2
by Annett Bartsch, Georg Pointner, Thomas Ingeman-Nielsen and Wenjun Lu
Remote Sens. 2020, 12(15), 2368; https://doi.org/10.3390/rs12152368 - 23 Jul 2020
Cited by 34 | Viewed by 5353
Abstract
Infrastructure expands rapidly in the Arctic due to industrial development. At the same time, climate change impacts are pronounced in the Arctic. Ground temperatures are, for example, increasing as well as coastal erosion. A consistent account of the current human footprint is needed [...] Read more.
Infrastructure expands rapidly in the Arctic due to industrial development. At the same time, climate change impacts are pronounced in the Arctic. Ground temperatures are, for example, increasing as well as coastal erosion. A consistent account of the current human footprint is needed in order to evaluate the impact on the environments as well as risk for infrastructure. Identification of roads and settlements with satellite data is challenging due to the size of single features and low density of clusters. Spatial resolution and spectral characteristics of satellite data are the main issues regarding their separation. The Copernicus Sentinel-1 and -2 missions recently provided good spatial coverage and at the same time comparably high pixel spacing starting with 10 m for modes available across the entire Arctic. The purpose of this study was to assess the capabilities of both, Sentinel-1 C-band Synthetic Aperture Radar (SAR) and the Sentinel-2 multispectral information for Arctic focused mapping. Settings differ across the Arctic (historic settlements versus industrial, locations on bedrock versus tundra landscapes) and reference data are scarce and inconsistent. The type of features and data scarcity demand specific classification approaches. The machine learning approaches Gradient Boosting Machines (GBM) and deep learning (DL)-based semantic segmentation have been tested. Records for the Alaskan North Slope, Western Greenland, and Svalbard in addition to high-resolution satellite data have been used for validation and calibration. Deep learning is superior to GBM with respect to users accuracy. GBM therefore requires comprehensive postprocessing. SAR provides added value in case of GBM. VV is of benefit for road identification and HH for detection of buildings. Unfortunately, the Sentinel-1 acquisition strategy is varying across the Arctic. The majority is covered in VV+VH only. DL is of benefit for road and building detection but misses large proportions of other human-impacted areas, such as gravel pads which are typical for gas and oil fields. A combination of results from both GBM (Sentinel-1 and -2 combined) and DL (Sentinel-2; Sentinel-1 optional) is therefore suggested for circumpolar mapping. Full article
Show Figures

Graphical abstract

Back to TopTop