Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = female germline stem cells (fGSCs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 12105 KiB  
Article
MitoQ Protects Ovarian Organoids against Oxidative Stress during Oogenesis and Folliculogenesis In Vitro
by Jiapeng Wang, Hua Du, Lixin Ma, Mingqian Feng, Liping Li, Xiaorong Zhao and Yanfeng Dai
Int. J. Mol. Sci. 2023, 24(2), 924; https://doi.org/10.3390/ijms24020924 - 4 Jan 2023
Cited by 15 | Viewed by 3609
Abstract
Ovarian organoids, based on mouse female germline stem cells (FGSCs), have great value in basic research and are a vast prospect in pre-clinical drug screening due to their properties, but the competency of these in vitro-generated oocytes was generally low, especially, in vitro [...] Read more.
Ovarian organoids, based on mouse female germline stem cells (FGSCs), have great value in basic research and are a vast prospect in pre-clinical drug screening due to their properties, but the competency of these in vitro-generated oocytes was generally low, especially, in vitro maturation (IVM) rate. Recently, it has been demonstrated that the 3D microenvironment triggers mitochondrial dysfunction during follicle growth in vitro. Therefore, therapies that protect mitochondria and enhance their function in oocytes warrant investigation. Here, we reported that exposure to 100 nM MitoQ promoted follicle growth and maturation in vitro, accompanied by scavenging ROS, reduced oxidative injury, and restored mitochondrial membrane potential in oocytes. Mechanistically, using mice granulosa cells (GCs) as a cellular model, it was shown that MitoQ protects GCs against H2O2-induced apoptosis by inhibiting the oxidative stress pathway. Together, these results reveal that MitoQ reduces oxidative stress in ovarian follicles via its antioxidative action, thereby protecting oocytes and granulosa cells and providing an efficient way to improve the quality of in vitro-generated oocytes. Full article
(This article belongs to the Special Issue Mitochondrial Function in Health and Disease 2022)
Show Figures

Figure 1

18 pages, 4384 KiB  
Article
2cChIP-seq and 2cMeDIP-seq: The Carrier-Assisted Methods for Epigenomic Profiling of Small Cell Numbers or Single Cells
by Congxia Hu, Jun Wu, Pengxiao Li, Yabin Zhang, Yonglin Peng, Ruiqi Liu, Wenfei Du, Yani Kang, Jielin Sun, Ji Wu, Zhifeng Shao and Xiaodong Zhao
Int. J. Mol. Sci. 2022, 23(22), 13984; https://doi.org/10.3390/ijms232213984 - 12 Nov 2022
Cited by 2 | Viewed by 2534
Abstract
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) can profile genome-wide epigenetic marks associated with regulatory genomic elements. However, conventional ChIP-seq is challenging when examining limited numbers of cells. Here, we developed a new technique by supplementing carrier materials of both chemically modified mimics [...] Read more.
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) can profile genome-wide epigenetic marks associated with regulatory genomic elements. However, conventional ChIP-seq is challenging when examining limited numbers of cells. Here, we developed a new technique by supplementing carrier materials of both chemically modified mimics with epigenetic marks and dUTP-containing DNA fragments during conventional ChIP procedures (hereafter referred to as 2cChIP-seq), thus dramatically improving immunoprecipitation efficiency and reducing DNA loss of low-input ChIP-seq samples. Using this strategy, we generated high-quality epigenomic profiles of histone modifications or DNA methylation in 10–1000 cells. By introducing Tn5 transposase-assisted fragmentation, 2cChIP-seq reliably captured genomic regions with histone modification at the single-cell level in about 100 cells. Moreover, we characterized the methylome of 100 differentiated female germline stem cells (FGSCs) and observed a particular DNA methylation signature potentially involved in the differentiation of mouse germline stem cells. Hence, we provided a reliable and robust epigenomic profiling approach for small cell numbers and single cells. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 6000 KiB  
Article
Characterization of the In Vitro Cultured Ovarian Cells in the Asian Yellow Pond Turtle (Mauremys mutica)
by Xiaoli Liu, Fang Liu, Haoyang Xu, Yanping Yang, Yakun Wang, Xiaoyou Hong, Wei Li, Lingyun Yu, Chen Chen, Hongyan Xu and Xinping Zhu
Biology 2022, 11(10), 1404; https://doi.org/10.3390/biology11101404 - 26 Sep 2022
Cited by 5 | Viewed by 3010
Abstract
Gonadal cell lines possess the abilities of self-renewal and differentiation, being used as an efficient tool to analyzing the genes’ functions involved in sex differentiation and gametogenesis. Although some significant achievements have been obtained in the gonadal cells’ culture or manipulation across multiple [...] Read more.
Gonadal cell lines possess the abilities of self-renewal and differentiation, being used as an efficient tool to analyzing the genes’ functions involved in sex differentiation and gametogenesis. Although some significant achievements have been obtained in the gonadal cells’ culture or manipulation across multiple phyla including teleost and mammals, there is limited study on gonadal cell manipulation in turtles. In this study, we established a new ovarian cell line from the young Asian yellow pond turtle (Mauremys mutica), which exhibited a normal diploid karyotype with high alkaline phosphatase activity. The cell line, designated as YTO2, was then characterized through the analysis of gene expression profiles. The transcriptome analysis and the reverse transcription polymerase chain reaction (RT-PCR) showed that the cells expressed germline genes such as tdrd7, nanos1, klf5, igtb1, hsd17b4 and rad51. Moreover, the immunostaining showed that the germ cell markers, Tdrd7 and Rad51 proteins, were detected predominant in cytoplasm of perinuclear region, while proliferation marker, PCNA, was dominantly observed in the nuclei of cultured cells. Intriguingly, the cells could respond to the retinoic acid induction with significantly increasing the expression level of some meiosis genes, including vasa, dazl, figla, and dmc1. Furthermore, YTO2 cells could be efficiently transfected with the pHBAd-BHG-EGFP adenovirus and properly expressed the exogenous genes. To sum up, an ovarian cell line of the Asian yellow pond turtle had been established and could be stably propagated under in vitro culture condition, as well as being capable of efficiently expressing the exogenous gene tdrd7. This cell line would provide a valuable tool to elaborate the molecular mechanisms behind germ cells development, differentiation and oogenesis in the turtle, even in reptiles. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Graphical abstract

16 pages, 3273 KiB  
Article
Resveratrol Plays a Protective Role against Premature Ovarian Failure and Prompts Female Germline Stem Cell Survival
by Yu Jiang, Zhaoyuan Zhang, Lijun Cha, Lili Li, Dantian Zhu, Zhi Fang, Zhiqiang He, Jian Huang and Zezheng Pan
Int. J. Mol. Sci. 2019, 20(14), 3605; https://doi.org/10.3390/ijms20143605 - 23 Jul 2019
Cited by 62 | Viewed by 7386
Abstract
This study was designed to investigate the protective effect of resveratrol (RES) on premature ovarian failure (POF) and the proliferation of female germline stem cells (FGSCs) at the tissue and cell levels. POF mice were lavaged with RES, and POF ovaries were co-cultured [...] Read more.
This study was designed to investigate the protective effect of resveratrol (RES) on premature ovarian failure (POF) and the proliferation of female germline stem cells (FGSCs) at the tissue and cell levels. POF mice were lavaged with RES, and POF ovaries were co-cultured with RES and/or GANT61 in vitro. FGSCs were pretreated with Busulfan and RES and/or GANT61 and co-cultured with M1 macrophages, which were pretreated with RES. The weights of mice and their ovaries, as well as their follicle number, were measured. Ovarian function, antioxidative stress, inflammation, and FGSCs survival were evaluated. RES significantly increased the weights of POF mice and their ovaries as well as the number of follicles, while it decreased the atresia rate of follicles. Higher levels of Mvh, Oct4, SOD2, GPx, and CAT were detected after treatment with RES in vivo and in vitro. RES treatment resulted in significantly lower TNF-α and IL-6 concentrations and an obviously higher IL-10 concentration in the ovaries. In FGSCs, higher Mvh, Oct4, and SOD2 concentrations and lower TNF-α, IL-6, and MDA concentrations were measured in the RES group. Blockage of the Hh signaling pathway reversed the protective effect of RES on FGSCs. In conclusion, RES effectively improved the ovarian function of the POF model and the productive capacity of FGSCs via relieving oxidative stress and inflammation and a mechanism involving the Hh signaling pathway, suggesting that RES is a potential agent against POF and can aid in the survival of FGSCs. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

13 pages, 2295 KiB  
Article
C89 Induces Autophagy of Female Germline Stem Cells via Inhibition of the PI3K-Akt Pathway In Vitro
by Xinyue Li, Xiaopeng Hu, Geng G. Tian, Ping Cheng, Zezhong Li, Mingyan Zhu, Huchen Zhou and Ji Wu
Cells 2019, 8(6), 606; https://doi.org/10.3390/cells8060606 - 18 Jun 2019
Cited by 11 | Viewed by 5175
Abstract
Postnatal female germline stem cells (FGSCs) are a type of germline stem cell with self-renewal ability and the capacity of differentiation toward oocyte. The proliferation, differentiation, and apoptosis of FGSCs have been researched in recent years, but autophagy in FGSCs has not been [...] Read more.
Postnatal female germline stem cells (FGSCs) are a type of germline stem cell with self-renewal ability and the capacity of differentiation toward oocyte. The proliferation, differentiation, and apoptosis of FGSCs have been researched in recent years, but autophagy in FGSCs has not been explored. This study investigated the effects of the small-molecule compound 89 (C89) on FGSCs and the underlying molecular mechanism in vitro. Cytometry, Cell Counting Kit-8 (CCK8), and 5-ethynyl-2’-deoxyuridine (EdU) assay showed that the number, viability, and proliferation of FGSCs were significantly reduced in C89-treated groups (0.5, 1, and 2 µM) compared with controls. C89 had no impact on FGSC apoptosis or differentiation. However, C89 treatment induced the expression of light chain 3 beta II (LC3BII) and reduced the expression of sequestosome-1 (SQSTM1) in FGSCs, indicating that C89 induced FGSC autophagy. To investigate the mechanism of C89-induced FGSC autophagy, RNA-seq technology was used to compare the transcriptome differences between C89-treated FGSCs and controls. Bioinformatics analysis of the sequencing data indicated a potential involvement of the phosphatidylinositol 3 kinase and kinase Akt (PI3K-Akt) pathway in the effects of C89′s induction of autophagy in FGSCs. Western blot confirmed that levels of p-PI3K and p-Akt were significantly reduced in the C89- or LY294002 (PI3K inhibitor)-treated groups compared with controls. Moreover, we found cooperative functions of C89 and LY294002 in inducing FGSC autophagy through suppressing the PI3K-Akt pathway. Taken together, this research demonstrates that C89 can reduce the number, viability, and proliferation of FGSCs by inducing autophagy. Furthermore, C89 induced FGSC autophagy by inhibiting the activity of PI3K and Akt. The PI3K-Akt pathway may be a target to regulate FGSC proliferation and death. Full article
(This article belongs to the Special Issue Female Germline Stem Cells)
Show Figures

Figure 1

Back to TopTop