Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = febrile vesicular rashes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1428 KB  
Article
Rickettsial Diseases: Not Uncommon Causes of Acute Febrile Illness in India
by Manisha Biswal, Sivanantham Krishnamoorthi, Kamlesh Bisht, Amit Sehgal, Jasleen Kaur, Navneet Sharma, Vikas Suri and Sunil Sethi
Trop. Med. Infect. Dis. 2020, 5(2), 59; https://doi.org/10.3390/tropicalmed5020059 - 15 Apr 2020
Cited by 20 | Viewed by 5233
Abstract
Rickettsial diseases (RDs) are major under-diagnosed causes of arthropod borne acute febrile illness (AFI) presenting with a range of symptoms from mild self-limiting fever to fatal sepsis. The spotted fever group (SFG) and typhus group (TG) are major RDs, which are commonly caused [...] Read more.
Rickettsial diseases (RDs) are major under-diagnosed causes of arthropod borne acute febrile illness (AFI) presenting with a range of symptoms from mild self-limiting fever to fatal sepsis. The spotted fever group (SFG) and typhus group (TG) are major RDs, which are commonly caused by Rickettsia conorii and Rickettsia typhi, respectively. The limited availability and role of serological tests in the acute phase of illness warrants rapid reliable molecular methods for diagnosis and epidemiological studies. Two hundred patients with AFI in whom the routine fever diagnostics were negative, were enrolled over a period of two months (April 2019 to May 2019). DNA was extracted and in-house nested PCR using primers specific for both SPG and TG pathogens was used. The positive amplified products were sequenced for species identification and phylogenetic analysis was performed using MEGA 7.0.14 software (iGEM, Temple University, Philadelphia, PA 19122, USA). The demographic details of the RD cases were documented. The prevalence of RD among AFI cases was 7% (14/200); SFG and TG were identified as the cause in 4% and 3% of AFI cases, respectively. The median age of the RD cases was 22 years (range 2–65). The median duration of fever was 3 days (range 1–12). The RD cases presented with respiratory symptoms or signs (44.44%), jaundice (22.22%), abdominal pain (22.22%), diarrhea (22.22), vesicular rash (11.11%), vomiting (11.11%), loss of appetite (11.11%), headache (11.11%), leukocytosis (88.88% with mean count 22,750/mm3), and thrombocytopenia (33.33%). The cases were treated empirically with piperacillin-tazobactam (66.66%), clindamycin (44.44%), cefotaxime (33.33%), meropenem (33.33%), metronidazole (33.33%), doxycycline (22.22%), azithromycin (22.22%), ceftriaxone (11.11%), and amoxicillin-clavulanic acid (11.11%). The mortality among the RD cases was 11.11%. The present pilot study shows that RD is not an uncommon cause of AFI in north India. The febrile episodes are usually transient, not severe and associated with heterogenous clinical presentation without documented history of tick exposure in the hospitalized patients. The transient, non-severe, febrile illness could be due to transient rickettsemia resulting from empirical antimicrobial therapy as the rickettsial organisms are expected to be more susceptible to higher doses of β-lactam antibiotics. The study emphasizes the molecular method as a useful tool to identify rickettsial etiology in AFI. Full article
(This article belongs to the Special Issue Selected Papers from The 2nd Asia Pacific Rickettsia Conference)
Show Figures

Figure 1

29 pages, 13983 KB  
Review
Rapid Viral Diagnosis of Orthopoxviruses by Electron Microscopy: Optional or a Must?
by Hans R. Gelderblom and Dick Madeley
Viruses 2018, 10(4), 142; https://doi.org/10.3390/v10040142 - 22 Mar 2018
Cited by 30 | Viewed by 19578
Abstract
Diagnostic electron microscopy (DEM) was an essential component of viral diagnosis until the development of highly sensitive nucleic acid amplification techniques (NAT). The simple negative staining technique of DEM was applied widely to smallpox diagnosis until the world-wide eradication of the human-specific pathogen [...] Read more.
Diagnostic electron microscopy (DEM) was an essential component of viral diagnosis until the development of highly sensitive nucleic acid amplification techniques (NAT). The simple negative staining technique of DEM was applied widely to smallpox diagnosis until the world-wide eradication of the human-specific pathogen in 1980. Since then, the threat of smallpox re-emerging through laboratory escape, molecular manipulation, synthetic biology or bioterrorism has not totally disappeared and would be a major problem in an unvaccinated population. Other animal poxviruses may also emerge as human pathogens. With its rapid results (only a few minutes after arrival of the specimen), no requirement for specific reagents and its “open view”, DEM remains an important component of virus diagnosis, particularly because it can easily and reliably distinguish smallpox virus or any other member of the orthopoxvirus (OPV) genus from parapoxviruses (PPV) and the far more common and less serious herpesviruses (herpes simplex and varicella zoster). Preparation, enrichment, examination, internal standards and suitable organisations are discussed to make clear its continuing value as a diagnostic technique. Full article
(This article belongs to the Special Issue Smallpox and Emerging Zoonotic Orthopoxviruses: What Is Coming Next?)
Show Figures

Graphical abstract

Back to TopTop