Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = fayalite flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9113 KB  
Article
Selective Recovery of Rare Earth Elements from Electric Motors in End-of-Life Vehicles via Copper Slag for Sustainability
by Erdenebold Urtnasan, Chang-Jeong Kim, Yeon-Jun Chung and Jei-Pil Wang
Processes 2025, 13(11), 3502; https://doi.org/10.3390/pr13113502 - 31 Oct 2025
Viewed by 943
Abstract
Discarded NdFeB permanent magnets will become a significant source of rare earth elements (REEs) in the future. Electric vehicle (EV) motors utilize 2–5 kg of NdFeB magnets, and researchers are prioritizing the development of suitable extraction technologies. The objective of our research is [...] Read more.
Discarded NdFeB permanent magnets will become a significant source of rare earth elements (REEs) in the future. Electric vehicle (EV) motors utilize 2–5 kg of NdFeB magnets, and researchers are prioritizing the development of suitable extraction technologies. The objective of our research is to separate metal materials (Al, Cu, Fe and FEEs) from EV motors, based on their melting temperatures. REE magnets that pose the greatest challenge are melted together with the electrical steel of the motor, and the potential for extracting REEs in a selective manner from the molten steel was examined based on their significant oxidation potential using FeO–SiO2 compounds, which act as an oxidizing slag-forming agent, to test the extraction method. Fayalite (2FeO·SiO2) is the most easily created and ideal eutectic compound for carrying oxygen (FeO) and forming slag (SiO44), typically generated during copper smelting. In this experiment, copper slag was used and the results were compared to a smelting test, which had previously used a synthesized fayalite flux as a model. The smelting test, utilizing synthesized fayalite flux, yielded a 91% Nd recovery rate. The Nd recovery rate in the smelting test with copper slag hit a high of 64.81%, influenced by the smelting’s holding time. The steel contained 0.08% Nd. Iron was recovered from the copper slag at a rate of 73%. During the smelting test, it was observed that the reaction between Nd2O3 and the Al2O3 crucible resulted in the formation of a layer on the surface of the crucible, diffusion into the crucible itself, and a subsequent reduction in the efficiency of Nd recovery. Full article
Show Figures

Graphical abstract

23 pages, 2876 KB  
Article
Pyrometallurgical Recycling of Electric Motors for Sustainability in End-of-Life Vehicle Metal Separation Planning
by Erdenebold Urtnasan, Jeong-Hoon Park, Yeon-Jun Chung and Jei-Pil Wang
Processes 2025, 13(6), 1729; https://doi.org/10.3390/pr13061729 - 31 May 2025
Cited by 1 | Viewed by 1621
Abstract
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare [...] Read more.
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare earth elements (REEs) from NdFeB permanent magnets (PMs). This research is based on a single-furnace process concept designed to separate metal components within PM motors by exploiting the varying melting points of the constituent materials, simultaneously extracting REEs present within the PMs and transferring them into the slag phase. Thermodynamic modeling, via Factsage Equilib stream calculations, optimized the experimental process. Simulated materials substituted the PM motor, which optimized modeling-directed melting within an induction furnace. The 2FeO·SiO2 fayalite flux can oxidize rare earth elements, resulting in slag. The neodymium oxidation reaction by fayalite exhibits a ΔG° of −427 kJ when subjected to an oxygen partial pressure (PO2) of 1.8 × 10−9, which is lower than that required for FeO decomposition. Concerning the FeO–SiO2 system, neodymium, in Nd3+, exhibits a strong bonding with the SiO44 matrix, leading to its incorporation within the slag as the silicate compound, Nd2Si2O7. When 30 wt.% fayalite flux was added, the resulting experiment yielded a neodymium extraction degree of 91%, showcasing the effectiveness of this fluxing agent in the extraction process. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

25 pages, 5971 KB  
Article
Origin of Historical Ba-Rich Slags Related to Pb-Ag Production from Jihlava Ore District (Czech Republic)
by Jaroslav Kapusta, Zdeněk Dolníček, Ondra Sracek and Karel Malý
Minerals 2022, 12(8), 985; https://doi.org/10.3390/min12080985 - 2 Aug 2022
Cited by 5 | Viewed by 3590
Abstract
The aim of this study was to characterize historical slags which originated during silver production from the Jihlava ore district, Czech Republic. The area was among the head producers of silver within the Lands of the Czech Crown in 13th–14th centuries. The mined [...] Read more.
The aim of this study was to characterize historical slags which originated during silver production from the Jihlava ore district, Czech Republic. The area was among the head producers of silver within the Lands of the Czech Crown in 13th–14th centuries. The mined ores had complex composition, being formed mostly by pyrite, sphalerite, galena, chalcopyrite, and accessory silver-rich minerals such as silver-bearing tetrahedrite (freibergite) or pyrargyrite, with gangue represented by quartz and Mn-rich carbonates or baryte. Large volumes of slags with contrasting composition were generated during the Pb-Ag production. Altogether, two main types of slags were identified in the district. The first type is characterized by high BaO contents (up to 34.5 wt.%) and dominancy of glass, minor quartz, and accessory amounts of Ba-rich feldspar (up to 93 mol.% of Cls), metal-rich inclusions, Ba-Pb sulphates and only rare pyroxene, wollastonite and melilite. The composition of the second group belongs to fayalitic slags containing glass, Fe-rich olivine, accessory pyroxene, feldspar, quartz, and inclusions of various metallic phases. Fluxes were derived from gangue (quartz, carbonates, baryte) or local host rocks for both types of slag. The calculated viscosity indexes reflect (with minor exceptions) medium-to-high effectivity of metal separation. Smelting temperatures were estimated from a series of ternary plots; however, more reliable estimates for both types of slags were obtained only from experimental determination of melting temperature and calculations using bulk/glass compositions (~1100–1200 °C). Full article
(This article belongs to the Special Issue Applications of Geochemistry in Archaeology)
Show Figures

Figure 1

11 pages, 1199 KB  
Article
A Study on Reduction of Copper Smelting Slag by Carbon for Recycling into Metal Values and Cement Raw Material
by Jei-Pil Wang and Urtnasan Erdenebold
Sustainability 2020, 12(4), 1421; https://doi.org/10.3390/su12041421 - 14 Feb 2020
Cited by 44 | Viewed by 7790
Abstract
Copper smelting slag is a solution of molten oxides created during the copper smelting and refining process, and about 1.5 million tons of copper slag are generated annually in Korea. The oxides in copper smelting slag include ferrous (FeO), ferric oxide (Fe2 [...] Read more.
Copper smelting slag is a solution of molten oxides created during the copper smelting and refining process, and about 1.5 million tons of copper slag are generated annually in Korea. The oxides in copper smelting slag include ferrous (FeO), ferric oxide (Fe2O3), silica (SiO2 from flux), alumina (AI2O3), calcia (CaO) and magnesia (MgO). The main oxides in copper slag, which are iron oxide and silica, exist in the form of fayalite (2FeO·SiO2). Since copper smelting slag contains high content of iron, and copper and zinc, common applications of copper smelting slag can be used in value-added products such as abrasive tools, roofing granules, road-base construction, railroad ballast, fine aggregate in concrete, etc. Some studies have attempted to recover metal values from copper slag. This research was intended to recover ferrous alloy contained Cu, a raw material of zinc, from copper slag, and produce reformed slag such as blast furnace slag for Portland cement. As a result, it was confirmed that with reduction smelting by carbon at temperatures above 1400 °C, it is possible to recover pig iron containing copper from copper smelting slag, and the addition of CaO in reduction smelting helped to reduce iron oxide in the fayalite and change the chemical and mineralogical composition of the slag. The copper oxide in the slag can be easily reduced and dissolved in the molten pig iron, and zinc oxide is also reduced to a volatile zinc, which is removed from the furnace as fumes, by carbon during the reduction process. When CaO addition is above 5%, acid slag is completely transformed into calcium silicate slag and is observed to be like blast furnace slag. Full article
(This article belongs to the Special Issue EARTH 2019-Green Technologies for Resources and Materials Recycling)
Show Figures

Figure 1

Back to TopTop