Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = fast economic NMPC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 43946 KiB  
Article
A Low-Cost 3D SLAM System Integration of Autonomous Exploration Based on Fast-ICP Enhanced LiDAR-Inertial Odometry
by Conglin Pang, Liqing Zhou and Xianfeng Huang
Remote Sens. 2024, 16(11), 1979; https://doi.org/10.3390/rs16111979 - 30 May 2024
Cited by 11 | Viewed by 4681
Abstract
Advancements in robotics and mapping technology have spotlighted the development of Simultaneous Localization and Mapping (SLAM) systems as a key research area. However, the high cost of advanced SLAM systems poses a significant barrier to research and development in the field, while many [...] Read more.
Advancements in robotics and mapping technology have spotlighted the development of Simultaneous Localization and Mapping (SLAM) systems as a key research area. However, the high cost of advanced SLAM systems poses a significant barrier to research and development in the field, while many low-cost SLAM systems, operating under resource constraints, fail to achieve high-precision real-time mapping and localization, rendering them unsuitable for practical applications. This paper introduces a cost-effective SLAM system design that maintains high performance while significantly reducing costs. Our approach utilizes economical components and efficient algorithms, addressing the high-cost barrier in the field. First, we developed a robust robotic platform based on a traditional four-wheeled vehicle structure, enhancing flexibility and load capacity. Then, we adapted the SLAM algorithm using the LiDAR-inertial Odometry framework coupled with the Fast Iterative Closest Point (ICP) algorithm to balance accuracy and real-time performance. Finally, we integrated the 3D multi-goal Rapidly exploring Random Tree (RRT) algorithm with Nonlinear Model Predictive Control (NMPC) for autonomous exploration in complex environments. Comprehensive experimental results confirm the system’s capability for real-time, autonomous navigation and mapping in intricate indoor settings, rivaling more expensive SLAM systems in accuracy and efficiency at a lower cost. Our research results are published as open access, facilitating greater accessibility and collaboration. Full article
Show Figures

Figure 1

18 pages, 937 KiB  
Article
Sensitivity-Based Economic NMPC with a Path-Following Approach
by Eka Suwartadi, Vyacheslav Kungurtsev and Johannes Jäschke
Processes 2017, 5(1), 8; https://doi.org/10.3390/pr5010008 - 27 Feb 2017
Cited by 19 | Viewed by 7020
Abstract
We present a sensitivity-based predictor-corrector path-following algorithm for fast nonlinear model predictive control (NMPC) and demonstrate it on a large case study with an economic cost function. The path-following method is applied within the advanced-step NMPC framework to obtain fast and accurate approximate [...] Read more.
We present a sensitivity-based predictor-corrector path-following algorithm for fast nonlinear model predictive control (NMPC) and demonstrate it on a large case study with an economic cost function. The path-following method is applied within the advanced-step NMPC framework to obtain fast and accurate approximate solutions of the NMPC problem. In our approach, we solve a sequence of quadratic programs to trace the optimal NMPC solution along a parameter change. A distinguishing feature of the path-following algorithm in this paper is that the strongly-active inequality constraints are included as equality constraints in the quadratic programs, while the weakly-active constraints are left as inequalities. This leads to close tracking of the optimal solution. The approach is applied to an economic NMPC case study consisting of a process with a reactor, a distillation column and a recycler. We compare the path-following NMPC solution with an ideal NMPC solution, which is obtained by solving the full nonlinear programming problem. Our simulations show that the proposed algorithm effectively traces the exact solution. Full article
(This article belongs to the Special Issue Real-Time Optimization)
Show Figures

Figure 1

Back to TopTop