Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = exotic Tamarix

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8896 KiB  
Article
A Prediction of Estuary Wetland Vegetation with Satellite Images
by Min Yang, Bin Guo, Ning Gao, Yang Yu, Xiaoli Song and Yanfeng Gu
J. Mar. Sci. Eng. 2025, 13(2), 287; https://doi.org/10.3390/jmse13020287 - 4 Feb 2025
Viewed by 942
Abstract
Estuarine wetlands are the transition zone between marine, freshwater, and terrestrial ecosystems and are more ecologically fragile. In recent years, the spread of exotic vegetation, specifically Spartina alterniflora, in the Yellow River estuary wetlands has significantly encroached upon the habitats of native [...] Read more.
Estuarine wetlands are the transition zone between marine, freshwater, and terrestrial ecosystems and are more ecologically fragile. In recent years, the spread of exotic vegetation, specifically Spartina alterniflora, in the Yellow River estuary wetlands has significantly encroached upon the habitats of native species such as Phragmites australis, Suaeda glauca Bunge, and Tamarix chinensis Lour. With advances in land prediction modeling, predicting wetland vegetation distribution can aid management and decision-making for ecological restoration. We selected the core area as the study object and coupled the hydrological model MIKE 21 with the PLUS model to predict the potential future distribution of invasive and dominant species in the region. (1) Based on the fine classification results from satellite images of GF1/G2/G5, we gained an understanding of the changes in wetland vegetation types in the core area of the reserve in 2018 and 2020. (2) Using public data such as ERA5 and GEO as input for basic environmental data, using MIKE 21 to provide high-spatial-resolution hydrodynamic parameters for the PLUS model as an environmental driver, we modeled the spatial distribution of various wetland vegetation in the Yellow River estuary wetland in Dongying under different artificial restoration measures. (3) We predicted the 2022 distribution of typical vegetation in the region, used the classification results of GF6 as the actual distribution, compared the spatial distribution with the actual distribution, and obtained a kappa coefficient of 0.78; the predicted values of the model are highly consistent with the true values. This study combines the fine classification results of vegetation based on hyperspectral remote sensing, the construction of a coupled model, and the prediction effect of typical species, providing a reference for constructing and optimizing the vegetation prediction model of estuarine wetlands. It also allows scientific and effective decision-making for the management of ecological restoration of delta wetlands. Full article
Show Figures

Figure 1

16 pages, 1170 KiB  
Article
The Impact of Exotic Tamarix Species on Riparian Plant Biodiversity
by Kgalalelo Tshimologo Annie Setshedi and Solomon Wakshom Newete
Agriculture 2020, 10(9), 395; https://doi.org/10.3390/agriculture10090395 - 7 Sep 2020
Cited by 8 | Viewed by 4211
Abstract
This study investigated the impact of exotic Tamarix species on vascular plant biodiversity in riparian ecosystems in the Western Cape Province, South Africa. Vegetation was sampled, using 5 m wide belt transects, along the Leeu, Swart, and Olifants riparian areas, which had varying [...] Read more.
This study investigated the impact of exotic Tamarix species on vascular plant biodiversity in riparian ecosystems in the Western Cape Province, South Africa. Vegetation was sampled, using 5 m wide belt transects, along the Leeu, Swart, and Olifants riparian areas, which had varying invasion intensities. Each transect was split into three zones (Zone 1: 0–15 m; Zone 2: 15–35, and Zone 3: >35 m), which were identified at each site based on species composition across each riparian zone. Woody plant species were identified, counted, and their heights measured within the transects that were laid out from the waterpoint (Zone 1) outwards (Zone 2 and 3). Herbaceous aerial cover (HAC) was determined subjectively and objectified using the Walker aerial cover scale. Leeu River had the highest species richness (Dmg = 2.79), diversity (H′ = 2.17; −lnλ = 1.91; N1 = 8.76 and α = 4.13), and evenness (J′= 0.80). The Swart River had the lowest species richness, which declined from Dmg = 1.96 (Zone 1) to Dmg = 1.82 (Zone 3). Exotic Tamarix species ranked in the top three most abundant woody vascular plant species along the Swart and Olifants rivers, where they ranked first and third, respectively. The Jaccard’s and Sorenson’s coefficients of similarity indicated that species differed greatly between the different sites, x¯ < 27% for both indices. The indices also indicated that the Swart River had the lowest level of species distinctness between zones (x¯ > 80%) while the Leeu River had the highest level of species distinctness (x¯ < 50%) between the different zones. These findings suggest a possible displacement of herbaceous and woody tree species by exotic Tamarix invasion, inter alia, a decrease in ecosystem functions and services associated with the loss in biodiversity, as well as significant bearings on the agricultural ecosystem by reducing the faunal diversity such as crop pollinators, inter alia. Full article
(This article belongs to the Special Issue Weed Ecology and New Approaches for Management)
Show Figures

Figure 1

Back to TopTop