Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = erbB3 binding protein (EBP1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1473 KB  
Article
Regulation of DNA Methylation Through EBP1 Interaction with NLRP2 and NLRP7
by Nayeon Hannah Son, Matthew So and Christopher R. Lupfer
DNA 2025, 5(4), 49; https://doi.org/10.3390/dna5040049 - 17 Oct 2025
Viewed by 721
Abstract
Background/Objectives: Mutations in NACHT, LRR and PYD domain-containing protein 2 (NLRP2) and NLRP7 genes, members of the NOD-like receptor (NLR) family of innate immune sensors, result in recurrent miscarriages and reproductive wastage in women. These genes have been identified to be maternal [...] Read more.
Background/Objectives: Mutations in NACHT, LRR and PYD domain-containing protein 2 (NLRP2) and NLRP7 genes, members of the NOD-like receptor (NLR) family of innate immune sensors, result in recurrent miscarriages and reproductive wastage in women. These genes have been identified to be maternal effect genes in humans and mice regulating early embryo development. Previous research in vitro suggests that NLRP2 and NLRP7 regulate DNA methylation and/or immune signaling through inflammasome formation. However, the exact mechanisms underlying NLRP2 and NLRP7 function are not well defined. Methods: To determine the interacting proteins required for NLRP2/NLRP7-mediated regulation of DNA methylation, yeast 2-hybrid screens, coimmunoprecipitation, and FRET studies were performed and verified the ability of novel protein interactions to affect global DNA methylation by 5-methylcytosine-specific ELISA. Results: Various methodologies employed in this research demonstrate a novel protein interaction between human ErbB3-binding protein 1 (EBP1, also known as proliferation-associated protein 2G4 (PA2G4) and NLRP2 or NLRP7. In addition, NLRP2 and NLRP7 regulate EBP1 gene expression. Functionally, global DNA methylation levels appeared to decrease further when NLRP2 and NLRP7 were co-expressed with EBP1, although additional studies may need to confirm the significance of this effect. Conclusions: Since EBP1 is implicated in apoptosis, cell proliferation, DNA methylation, and differentiation, our discovery significantly advances our understanding of how mutations in NLRP2 or NLRP7 may contribute to reproductive wastage in women through EBP1. Full article
Show Figures

Graphical abstract

20 pages, 4433 KB  
Article
Dysregulation of Epigenetic Control Contributes to Schizophrenia-Like Behavior in Ebp1+/− Mice
by Inwoo Hwang and Jee-Yin Ahn
Int. J. Mol. Sci. 2020, 21(7), 2609; https://doi.org/10.3390/ijms21072609 - 9 Apr 2020
Cited by 6 | Viewed by 4095
Abstract
Dysregulation of epigenetic machinery can cause a variety of neurological disorders associated with cognitive abnormalities. In the hippocampus of postmortem Schizophrenia (SZ) patients, the most notable finding is the deregulation of GAD67 along with differential regulation of epigenetic factors associated with glutamate decarboxylase [...] Read more.
Dysregulation of epigenetic machinery can cause a variety of neurological disorders associated with cognitive abnormalities. In the hippocampus of postmortem Schizophrenia (SZ) patients, the most notable finding is the deregulation of GAD67 along with differential regulation of epigenetic factors associated with glutamate decarboxylase 67 (GAD67) expression. As we previously reported, ErbB3-binding protein 1 (EBP1) is a potent epigenetic regulator. EBP1 can induce repression of Dnmt1, a well-studied transcriptional repressor of GAD67. In this study, we investigated whether EBP1 contributes to the regulation of GAD67 expression in the hippocampus, controlling epigenetic machinery. In accordance with SZ-like behaviors in Ebp1(+/−) mice, heterozygous deletion of EBP1 led to a dramatic reduction of GAD67 expression, reflecting an abnormally high level of Dnmt1. Moreover, we found that EBP1 binds to the promoter region of HDAC1, which leads to histone deacetylation of GAD67, and suppresses histone deacetylase 1 (HDAC1) expression, inversely mirroring an unusually high level of HDAC1 in Ebp1(+/−) mice. However, EBP1 mutant (p.Glu 183 Ter) found in SZ patients did not elevate the expression of GAD67, failing to suppress Dnmt1 and/or HDAC1 expression. Therefore, this data supports the hypothesis that a reduced amount of EBP1 may contribute to an etiology of SZ due to a loss of transcriptional inhibition of epigenetic repressors, leading to a decreased expression of GAD67. Full article
Show Figures

Graphical abstract

16 pages, 5861 KB  
Article
YC-1 Antagonizes Wnt/β-Catenin Signaling Through the EBP1 p42 Isoform in Hepatocellular Carcinoma
by Ju-Yun Wu, Yu-Lueng Shih, Shih-Ping Lin, Tsai-Yuan Hsieh and Ya-Wen Lin
Cancers 2019, 11(5), 661; https://doi.org/10.3390/cancers11050661 - 13 May 2019
Cited by 8 | Viewed by 4721
Abstract
Novel drugs targeting Wnt signaling are gradually being developed for hepatocellular carcinoma (HCC) treatment. In this study, we used a Wnt-responsive Super-TOPflash (STF) luciferase reporter assay to screen a new compound targeting Wnt signaling. 3-(5′-Hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1) was identified as a small molecule inhibitor [...] Read more.
Novel drugs targeting Wnt signaling are gradually being developed for hepatocellular carcinoma (HCC) treatment. In this study, we used a Wnt-responsive Super-TOPflash (STF) luciferase reporter assay to screen a new compound targeting Wnt signaling. 3-(5′-Hydroxymethyl-2′-furyl)-1-benzylindazole (YC-1) was identified as a small molecule inhibitor of the Wnt/β-catenin pathway. Our coimmunoprecipitation (co-IP) data showed that YC-1 did not affect the β-catenin/TCF interaction. Then, by mass spectrometry, we identified the ErbB3 receptor-binding protein 1 (EBP1) interaction with the β-catenin/TCF complex upon YC-1 treatment. EBP1 encodes two splice isoforms, p42 and p48. We further demonstrated that YC-1 enhances p42 isoform binding to the β-catenin/TCF complex and reduces the transcriptional activity of the complex. The suppression of colony formation by YC-1 was significantly reversed after knockdown of both isoforms (p48 and p42); however, the inhibition of colony formation was maintained when only EBP1 p48 was silenced. Taken together, these results suggest that YC-1 treatment results in a reduction in Wnt-regulated transcription through EBP1 p42 and leads to the inhibition of tumor cell proliferation. These data imply that YC-1 is a drug that antagonizes Wnt/β-catenin signaling in HCC. Full article
(This article belongs to the Special Issue Targeting Wnt Signaling in Cancer)
Show Figures

Figure 1

Back to TopTop