Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = epiproteomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 2971 KB  
Review
Omics-Based Investigations of Breast Cancer
by Anca-Narcisa Neagu, Danielle Whitham, Pathea Bruno, Hailey Morrissiey, Celeste A. Darie and Costel C. Darie
Molecules 2023, 28(12), 4768; https://doi.org/10.3390/molecules28124768 - 14 Jun 2023
Cited by 50 | Viewed by 12001
Abstract
Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses [...] Read more.
Breast cancer (BC) is characterized by an extensive genotypic and phenotypic heterogeneity. In-depth investigations into the molecular bases of BC phenotypes, carcinogenesis, progression, and metastasis are necessary for accurate diagnoses, prognoses, and therapy assessments in predictive, precision, and personalized oncology. This review discusses both classic as well as several novel omics fields that are involved or should be used in modern BC investigations, which may be integrated as a holistic term, onco-breastomics. Rapid and recent advances in molecular profiling strategies and analytical techniques based on high-throughput sequencing and mass spectrometry (MS) development have generated large-scale multi-omics datasets, mainly emerging from the three ”big omics”, based on the central dogma of molecular biology: genomics, transcriptomics, and proteomics. Metabolomics-based approaches also reflect the dynamic response of BC cells to genetic modifications. Interactomics promotes a holistic view in BC research by constructing and characterizing protein–protein interaction (PPI) networks that provide a novel hypothesis for the pathophysiological processes involved in BC progression and subtyping. The emergence of new omics- and epiomics-based multidimensional approaches provide opportunities to gain insights into BC heterogeneity and its underlying mechanisms. The three main epiomics fields (epigenomics, epitranscriptomics, and epiproteomics) are focused on the epigenetic DNA changes, RNAs modifications, and posttranslational modifications (PTMs) affecting protein functions for an in-depth understanding of cancer cell proliferation, migration, and invasion. Novel omics fields, such as epichaperomics or epimetabolomics, could investigate the modifications in the interactome induced by stressors and provide PPI changes, as well as in metabolites, as drivers of BC-causing phenotypes. Over the last years, several proteomics-derived omics, such as matrisomics, exosomics, secretomics, kinomics, phosphoproteomics, or immunomics, provided valuable data for a deep understanding of dysregulated pathways in BC cells and their tumor microenvironment (TME) or tumor immune microenvironment (TIMW). Most of these omics datasets are still assessed individually using distinct approches and do not generate the desired and expected global-integrative knowledge with applications in clinical diagnostics. However, several hyphenated omics approaches, such as proteo-genomics, proteo-transcriptomics, and phosphoproteomics-exosomics are useful for the identification of putative BC biomarkers and therapeutic targets. To develop non-invasive diagnostic tests and to discover new biomarkers for BC, classic and novel omics-based strategies allow for significant advances in blood/plasma-based omics. Salivaomics, urinomics, and milkomics appear as integrative omics that may develop a high potential for early and non-invasive diagnoses in BC. Thus, the analysis of the tumor circulome is considered a novel frontier in liquid biopsy. Omics-based investigations have applications in BC modeling, as well as accurate BC classification and subtype characterization. The future in omics-based investigations of BC may be also focused on multi-omics single-cell analyses. Full article
27 pages, 1610 KB  
Review
The Transition from Cancer “omics” to “epi-omics” through Next- and Third-Generation Sequencing
by Konstantina Athanasopoulou, Glykeria N. Daneva, Michaela A. Boti, Georgios Dimitroulis, Panagiotis G. Adamopoulos and Andreas Scorilas
Life 2022, 12(12), 2010; https://doi.org/10.3390/life12122010 - 2 Dec 2022
Cited by 7 | Viewed by 3395
Abstract
Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of [...] Read more.
Deciphering cancer etiopathogenesis has proven to be an especially challenging task since the mechanisms that drive tumor development and progression are far from simple. An astonishing amount of research has revealed a wide spectrum of defects, including genomic abnormalities, epigenomic alterations, disturbance of gene transcription, as well as post-translational protein modifications, which cooperatively promote carcinogenesis. These findings suggest that the adoption of a multidimensional approach can provide a much more precise and comprehensive picture of the tumor landscape, hence serving as a powerful tool in cancer research and precision oncology. The introduction of next- and third-generation sequencing technologies paved the way for the decoding of genetic information and the elucidation of cancer-related cellular compounds and mechanisms. In the present review, we discuss the current and emerging applications of both generations of sequencing technologies, also referred to as massive parallel sequencing (MPS), in the fields of cancer genomics, transcriptomics and proteomics, as well as in the progressing realms of epi-omics. Finally, we provide a brief insight into the expanding scope of sequencing applications in personalized cancer medicine and pharmacogenomics. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

9 pages, 684 KB  
Concept Paper
Pathogens and Disease Play Havoc on the Host Epiproteome—The “First Line of Response” Role for Proteomic Changes Influenced by Disorder
by Erik H. A. Rikkerink
Int. J. Mol. Sci. 2018, 19(3), 772; https://doi.org/10.3390/ijms19030772 - 8 Mar 2018
Cited by 8 | Viewed by 3895
Abstract
Organisms face stress from multiple sources simultaneously and require mechanisms to respond to these scenarios if they are to survive in the long term. This overview focuses on a series of key points that illustrate how disorder and post-translational changes can combine to [...] Read more.
Organisms face stress from multiple sources simultaneously and require mechanisms to respond to these scenarios if they are to survive in the long term. This overview focuses on a series of key points that illustrate how disorder and post-translational changes can combine to play a critical role in orchestrating the response of organisms to the stress of a changing environment. Increasingly, protein complexes are thought of as dynamic multi-component molecular machines able to adapt through compositional, conformational and/or post-translational modifications to control their largely metabolic outputs. These metabolites then feed into cellular physiological homeostasis or the production of secondary metabolites with novel anti-microbial properties. The control of adaptations to stress operates at multiple levels including the proteome and the dynamic nature of proteomic changes suggests a parallel with the equally dynamic epigenetic changes at the level of nucleic acids. Given their properties, I propose that some disordered protein platforms specifically enable organisms to sense and react rapidly as the first line of response to change. Using examples from the highly dynamic host-pathogen and host-stress response, I illustrate by example how disordered proteins are key to fulfilling the need for multiple levels of integration of response at different time scales to create robust control points. Full article
Show Figures

Graphical abstract

Back to TopTop