Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = enamelin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6273 KB  
Article
Impact of Dentistry Materials on Chemical Remineralisation/Infiltration versus Salivary Remineralisation of Enamel—In Vitro Study
by Lia-Raluca Damian, Ramona Dumitrescu, Vlad Tiberiu Alexa, David Focht, Cristoph Schwartz, Octavia Balean, Daniela Jumanca, Diana Obistioiu, Dacian Lalescu, Sebastian-Aurelian Stefaniga, Adina Berbecea, Aurora Doris Fratila, Alexandra Denisa Scurtu and Atena Galuscan
Materials 2022, 15(20), 7258; https://doi.org/10.3390/ma15207258 - 17 Oct 2022
Cited by 5 | Viewed by 3136
Abstract
The aim of this study is to evaluate salivary remineralisation versus chemical remineralisation/infiltration of enamel, using different dentistry materials. The enamel changes were studied using confocal laser scanning microscopy (CLSM), and the depth of lesions and demineralisation/remineralisation/infiltration percentage were calculated. Additionally, the macro [...] Read more.
The aim of this study is to evaluate salivary remineralisation versus chemical remineralisation/infiltration of enamel, using different dentistry materials. The enamel changes were studied using confocal laser scanning microscopy (CLSM), and the depth of lesions and demineralisation/remineralisation/infiltration percentage were calculated. Additionally, the macro elemental composition of the teeth was performed using atomic absorption spectroscopy (AAS). Two studies were performed: (i) demineralisation of enamel in 3% citric acid and infiltration treatment with infiltration resin (Icon, DMG), remineralisation with Fluor Protector (Ivoclar Vivadent) and artificial saliva pH 8; and (ii) enamel demineralisation in saliva at pH 3 and remineralisation at salivary pH 8. The results showed that, firstly, for the remineralisation of demineralised enamel samples, Fluor Protector (Ivoclar Vivadent) was very effective for medium demineralised lesions followed by saliva remineralisation. In cases of deep demineralisation lesions where fluoride could not penetrate, low viscosity resin (Icon, DMG, Hamburg) effectively infiltrated to stop the demineralisation process. Secondly, remineralisation in salivary conditions needed supplementary study over a longer period, to analyse the habits, diet and nutrition of patients in detail. Finally, demineralisation/remineralisation processes were found to influence the macro elemental composition of enamel demineralisation, with natural saliva proving to be less aggressive in terms of decreasing Ca and Mg content. Full article
(This article belongs to the Special Issue Biocompatible Materials Investigated with Optical Methods)
Show Figures

Figure 1

7 pages, 240 KB  
Article
Biomarkers for Lifetime Caries-Free Status
by Ariana M. Kelly, Mariana Bezamat, Adriana Modesto and Alexandre R. Vieira
J. Pers. Med. 2021, 11(1), 23; https://doi.org/10.3390/jpm11010023 - 30 Dec 2020
Cited by 7 | Viewed by 2774
Abstract
The purpose of this study was to address the hypothesis that extreme outcomes of dental caries, such as edentulism or prematurely losing permanent teeth are associated with genetic variation in enamel-formation genes. After scanning 6206 individuals, samples of 330 were selected for this [...] Read more.
The purpose of this study was to address the hypothesis that extreme outcomes of dental caries, such as edentulism or prematurely losing permanent teeth are associated with genetic variation in enamel-formation genes. After scanning 6206 individuals, samples of 330 were selected for this study. Tested phenotypes included patients who were edentulous by age 30, patients with missing first molars by age 30, patients with missing second molars by age 30, and caries-free patients. Fourteen single nucleotide polymorphisms were genotyped by TaqMan chemistry. The analyses of each phenotype were performed using the software PLINK with an alpha of 0.05. Nominal associations were found between rs12640848 in enamelin (p = 0.05), rs1784418 in matrix metallopeptidase 20 (p = 0.02), and rs5997096 in the tuftelin interacting protein 11 and being caries-free at the age of 60. When combining patients that were missing both first mandibular molars and missing both second mandibular molars, no associations were found. Matrix metallopeptidase 20, and tuftelin interacting protein 11 also showed trends for association with being caries-free. Genetic variation in TFIP11, MMP20, and ENAM may have a protective effect increasing the chances of individuals preserving their teeth caries-free over a lifetime. Full article
8 pages, 1158 KB  
Article
ENAM Gene Variation in Students Exposed to Different Fluoride Concentrations
by Denisse Duran-Merino, Nelly Molina-Frechero, Leonor Sánchez-Pérez, Martina Nevárez-Rascón, Rogelio González-González, Omar Tremillo-Maldonado, Diana Cassi and Ronell Bologna-Molina
Int. J. Environ. Res. Public Health 2020, 17(6), 1832; https://doi.org/10.3390/ijerph17061832 - 12 Mar 2020
Cited by 8 | Viewed by 2686
Abstract
The ENAM gene is important in the formation of tooth enamel; an alteration can affect the lengthening of the crystals, and the thickness in enamel. The objective was to determine the presence of the single nucleotide variant (SNV) rs12640848 of the ENAM gene [...] Read more.
The ENAM gene is important in the formation of tooth enamel; an alteration can affect the lengthening of the crystals, and the thickness in enamel. The objective was to determine the presence of the single nucleotide variant (SNV) rs12640848 of the ENAM gene in students exposed to different concentrations of fluoride. Methods: A cross-sectional study was conducted on students exposed to high concentrations of fluoride in the city of Durango which were divided according to the severity of fluorosis and dental caries. Genotype determination was performed by DNA sequencing. The relationship between the severity of dental fluorosis and the allele distribution was determined by the Fisher’s exact and Kruskal–Wallis tests. Results: Seventy-one students were included for the sequencing. In the different allelic variations, for the normal genotype AA/TT, the control group presented 75%, for the AG/TC variation, 70.8% in the TF ≤ 4 group, 65% in TF ≥ 5, and 16.7% in TF = 0; with respect to GG/CC variation, 12.5% in TF ≤ 4, 22% in TF ≥ 5, and 8.3% in TF = 0 group (p = 0.000). Conclusion: The ENAM gene showed an association in the population exposed to different concentrations of fluoride. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

17 pages, 2823 KB  
Article
Measuring the Microscopic Structures of Human Dental Enamel Can Predict Caries Experience
by Ariana M. Kelly, Anna Kallistova, Erika C. Küchler, Helena F. Romanos, Andrea Lips, Marcelo C. Costa, Adriana Modesto and Alexandre R. Vieira
J. Pers. Med. 2020, 10(1), 5; https://doi.org/10.3390/jpm10010005 - 2 Feb 2020
Cited by 18 | Viewed by 7934
Abstract
Objectives: The hierarchical structure of enamel gives insight on the properties of enamel and can influence its strength and ultimately caries experience. Currently, past caries experience is quantified using the decayed, missing, filled teeth/decayed, missing, filled surface (DMFT/DMFS for permanent teeth; dmft/dmfs for [...] Read more.
Objectives: The hierarchical structure of enamel gives insight on the properties of enamel and can influence its strength and ultimately caries experience. Currently, past caries experience is quantified using the decayed, missing, filled teeth/decayed, missing, filled surface (DMFT/DMFS for permanent teeth; dmft/dmfs for primary teeth), or international caries detection and assessment system (ICDAS) scores. By analyzing the structure of enamel, a new measurement can be utilized clinically to predict susceptibility to future caries experience based on a patient’s individual’s biomarkers. The purpose of this study was to test the hypothesis that number of prisms by square millimeter in enamel and average gap distance between prisms and interprismatic areas, influence caries experience through genetic variation of the genes involved in enamel formation. Materials and Methods: Scanning electron microscopy (SEM) images of enamel from primary teeth were used to measure (i) number of prisms by square millimeter and interprismatic spaces, (ii) prism density, and (iii) gap distances between prisms in the enamel samples. The measurements were tested to explore a genetic association with variants of selected genes and correlations with caries experience based on the individual’s DMFT+ dmft score and enamel microhardness at baseline, after an artificial lesion was created and after the artificial lesion was treated with fluoride. Results: Associations were found between variants of genes including ameloblastin, amelogenin, enamelin, tuftelin, tuftelin interactive protein 11, beta defensin 1, matrix metallopeptidase 20 and enamel structure variables measured (number of prisms by square millimeter in enamel and average gap distance between prisms and interprismatic areas). Significant correlations were found between caries experience and microhardness and enamel structure. Negative correlations were found between number of prisms by square millimeter and high caries experience (r value= −0.71), gap distance between prisms and the enamel microhardness after an artificial lesion was created (r value= −0.70), and gap distance between prisms and the enamel microhardness after an artificial lesion was created and then treated with fluoride (r value= −0.81). There was a positive correlation between number of prisms by square millimeter and prism density of the enamel (r value = 0.82). Conclusions: Our data support that genetic variation may impact enamel formation, and therefore influence susceptibility to dental caries and future caries experience. Clinical Relevance: The evaluation of enamel structure that may impact caries experience allows for hypothesizing that the identification of individuals at higher risk for dental caries and implementation of personalized preventative treatments may one day become a reality. Full article
(This article belongs to the Special Issue Molecular Diagnosis and New Therapeutic Approach of Oral Diseases)
Show Figures

Figure 1

Back to TopTop