Biomarkers for Lifetime Caries-Free Status
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edelstein, B.L. The dental caries pandemic and disparities problem. BMC Oral Health 2006, 6, S2. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Lanphear, B.; Hornung, R.; Flora, D.; Martinez-Mier, E.A.; Neufeld, R.; Ayotte, P.; Muckle, G.; Till, C. Association between maternal fluoride exposure during pregnancy and IQ scores in offspring in Canada. JAMA Pediatr. 2019, 173, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Kaste, L.M.; Selwitz, R.H.; Oldakowski, R.J.; Brunelle, J.A.; Winn, D.M.; Brown, L.J. Coronal caries in the primary and permanent dentition of children and adolescents 1–17 years of age: United States, 1988–1991. J. Dent. Res. 1996, 75, 631–641. [Google Scholar] [CrossRef]
- Lloyd, P.; MacLaren, D. Should We tax sugar and if so how? Aust. Econ. Rev. 2019, 52, 19–40. [Google Scholar] [CrossRef]
- Amoo-Achampong, F.; Vitunac, D.E.; Deeley, K.; Modesto, A.; Vieira, A.R. Complex patterns of response to oral hygiene instructions: Longitudinal evaluation of periodontal patients. BMC Oral Health 2018, 18, 72. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Ho, B.; Deeley, K.; Briseño-Ruiz, J.; Faraco, I.M., Jr.; Schupack, B.I.; Brancher, J.A.; Pecharki, G.D.; Küchler, E.C.; Tannure, P.N.; et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS ONE 2012, 7, e45022. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Modesto, A.; Marazita, M.L. Caries: Review of human genetics research. Caries Res. 2014, 48, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Bayram, M.; Deeley, K.; Reis, M.F.; Trombetta, V.M.; Ruff, T.D.; Sencak, R.C.; Hummel, M.; Dizak, P.M.; Washam, K.; Romanos, H.F.; et al. Genetic influences on dental enamel that impact caries differ between the primary and permanent dentitions. Eur. J. Oral Sci. 2015, 123, 327–334. [Google Scholar] [CrossRef]
- Shaffer, J.R.; Wang, X.; Feingold, E.; Lee, M.; Begum, F.; Weeks, D.E.; Cuenco, K.T.; Barmada, M.M.; Wendell, S.K.; Crosslin, D.R.; et al. Genome-wide association scan for childhood caries implicates novel genes. J. Dent. Res. 2011, 90, 1457–1462. [Google Scholar] [CrossRef]
- Shungin, D.; Haworth, S.; Divaris, K.; Agler, C.S.; Kamatani, Y.; Lee, M.K.; Grinde, K.; Hindy, G.; Alaraudanjoki, V.; Pesonen, P.; et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. Nat. Commun. 2019, 10, 2773. [Google Scholar] [CrossRef]
- Patir, A.; Seymen, F.; Yildirim, M.; Deeley, K.; Cooper, M.E.; Marazita, M.L.; Vieira, A.R. Enamel formation genes are associated with high caries experience in Turkish children. Caries Res. 2008, 42, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Marazita, M.; Goldstein-McHenry, T. Genome-wide scan finds suggestive caries loci. J. Dent. Res. 2008, 87, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Bezamat, M.; Harrison, B.; Zhou, Y.; Glickman, K.M.; Telles, V.; Guirguis, C.; Modesto, A.; Vieira, A.R. Phenome-wide scan finds potential orofacial risk markers for cancer. Sci. Rep. 2020, 10, 4869. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Silva, M.B.; Souza, K.K.A.; Filho, A.V.A.; Rosenblatt, A.; Modesto, A. A pragmatic study shows failure of dental composite fillings is genetically determined: A contribution to the discussion on dental amalgams. Front. Med. 2017, 4, 186. [Google Scholar] [CrossRef] [PubMed]
- Deeley, K.; Letra, A.; Rose, E.K.; Brandon, C.A.; Resick, J.M.; Marazita, M.L.; Vieira, A.R. Possible association of amelogenin to high caries experience in a Guatemalan-Mayan population. Caries Res. 2008, 42, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, A.; Famili, P.; Vieira, A.R. The antimicrobial peptide DEFB1 is associated with caries. J. Dent. Res. 2010, 89, 631–636. [Google Scholar] [CrossRef]
- Shimizu, T.; Deeley, K.; Briseño-Ruiz, J.; Faraco, I.M., Jr.; Poletta, F.A.; Brancher, J.A.; Pecharki, G.D.; Küchler, E.C.; Tannure, P.N.; Lips, A.; et al. Fine-mapping of 5q12.1–13.3 unveils new genetic contributors to caries. Caries Res. 2013, 47, 273–283. [Google Scholar] [CrossRef]
- Ergöz, N.; Seymen, F.; Gencay, K.; Tamay, Z.; Deeley, K.; Vinski, S.; Vieira, A.R. Genetic variation in ameloblastin is associated with caries in asthmatic children. Eur. Arch. Paediatr. Dent. 2014, 15, 211–216. [Google Scholar] [CrossRef]
- Krasone, K.; Lace, B.; Akota, I.; Care, R.; Deeley, K.; Küchler, E.C.; Vieira, A.R. Genetic variation in the promoter region of beta-defensin 1 (DEFB 1) is associated with high caries experience in children born with cleft lip and palate. Acta Odontol. Scand. 2014, 72, 235–240. [Google Scholar] [CrossRef]
- Weber, M.L.; Hsin, H.Y.; Kalay, E.; Brožková, D.S.; Shimizu, T.; Bayram, M.; Deeley, K.; Küchler, E.C.; Forella, J.; Ruff, T.D.; et al. Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay. BMC Med. Genet. 2014, 15, 81. [Google Scholar] [CrossRef][Green Version]
- Abbasoğlu, Z.; Tanboğa, I.; Küchler, E.C.; Deeley, K.; Weber, M.; Kaspar, C.; Korachi, M.; Vieira, A.R. Early childhood caries is associated with genetic variants in enamel formation and immune response genes. Caries Res. 2015, 49, 70–77. [Google Scholar] [CrossRef]
- Anjomshoaa, I.; Briseño-Ruiz, J.; Deeley, K.; Poletta, F.A.; Mereb, J.C.; Leite, A.L.; Barreta, P.A.T.M.; Silva, T.L.; Dizak, P.; Ruff, T.; et al. Aquaporin 5 interacts with fluoride and possibly protects against caries. PLoS ONE 2015, 10, e0143068. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.V.; Calixto, M.S.; Deeley, K.; Santos, N.; Rosenblatt, A.; Vieira, A.R. MMP20 rs1784418 protects certain populations against caries. Caries Res. 2017, 51, 46–51. [Google Scholar] [CrossRef]
- Vieira, A.R.; Bayram, M.; Seymen, F.; Sencak, R.C.; Lippert, F.; Modesto, A. In vitro acid-mediated initial dental enamel loss is associated with genetic variants previously linked to caries experience. Front. Physiol. 2017, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Ranade, K.; Chang, M.-S.; Ting, C.-T.; Pei, D.; Hsiao, C.-F.; Olivier, M.; Pesich, R.; Hebert, J.; Chen, Y.-D.I.; Dzau, V.J.; et al. High-throughput genotyping with single nucleotide polymorphisms. Genome Res. 2001, 11, 1262–1268. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Calton, M.A.; Ersoy, B.A.; Zhang, S.; Kane, J.P.; Malloy, M.J.; Pullinger, C.R.; Bromberg, Y.; Pennacchio, L.E.; Dent, R.; McPherson, R.; et al. Association of functionally significant Melanocortin-4 but not Melanocortin-3 receptor mutations with severe adult obesity in a large North American case-control study. Hum. Mol. Genet. 2008, 18, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Uhlen, M.M.; Stenhagen, K.R.; Dizak, P.M.; Holme, B.; Mulic, A.; Tveit, A.B.; Vieira, A.R. Genetic variation may explain why females are less susceptible to dental erosion. Eur. J. Oral Sci. 2016, 124, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Slayton, R.L.; Cooper, M.E.; Marazita, M.L. Tuftelin, mutans streptococci, and dental caries susceptibility. J. Dent. Res. 2005, 84, 711–714. [Google Scholar] [CrossRef]
- Weber, M.; Søvik, J.B.; Mulic, A.; Deeley, K.; Tveit, A.B.; Forella, J.; Shirey, N.; Vieira, A.R. Redefining the phenotype of dental caries. Caries Res. 2018, 52, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Llano, E.; Pendás, A.M.; Knäuper, V.; Sorsa, T.; Salo, T.; Salido, E.; Murphy, G.; Simmer, J.P.; Bartlett, J.D.; López-Otín, C. Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 1997, 36, 15101–15108. [Google Scholar] [CrossRef] [PubMed]
- Väänänen, A.; Tjäderhane, L.; Eklund, L.; Heljasvaara, R.; Pihlajaniemi, T.; Herva, R.; Ding, Y.; Bartlett, J.D.; Salo, T. Expression of collagen XVIII and MMP-20 in developing teeth and odontogenic tumors. Matrix Biol. 2004, 23, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Tannure, P.N.; Küchler, E.C.; Lips, A.; Costa, M.C.; Luiz, R.R.; Granjeiro, J.M.; Vieira, A.R. Genetic variation in MMP20 contributes to higher caries experience. J. Dent. 2012, 40, 381–386. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Antunes, L.A.; Antunes, L.S.; Küchler, E.C.; Lopes, L.B.; Moura, A.; Bigonha, R.S.; Abreu, F.V.; Granjeiro, J.M.; Amorim, L.M.F.; Paixão, I.C.N.P. Analysis of the association between polymorphisms in MMP2, MMP3, MMP9, MMP20, TIMP1, and TIMP2 genes with white spot lesions and early childhood caries. Int. J. Paediatr. Dent. 2016, 26, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Chaussain, C.; Bouazza, N.; Gasse, B.; Laffont, A.G.; Vital, S.O.; Davit-Béal, T.; Moulis, E.; Chabadel, O.; Hennequin, M.; Courson, F.; et al. Dental caries and enamelin haplotype. J. Dent. Res. 2014, 93, 360–365. [Google Scholar] [CrossRef] [PubMed]
- McGarvey, E.L.; Leon-Verdin, M.; Killos, L.F.; Guterbock, T.; Cohn, W.F. Health disparities between Appalachian and non-Appalachian counties in Virginia USA. J. Community Health 2011, 36, 348–356. [Google Scholar] [CrossRef]
- Vieira, A.R.; Hilands, K.M.; Braun, T.W. Saving more teeth—A case for personalized care. J. Pers. Med. 2015, 5, 30–35. [Google Scholar] [CrossRef]
- Vieira, A.R.; McHenry, T.G.; Daack-Hirsch, S.; Murray, J.C.; Marazita, M.L. Candidate gene/loci studies in cleft lip/palate and dental anomalies finds novel susceptibility genes for clefts. Genet. Med. 2008, 10, 668–674. [Google Scholar] [CrossRef]
- Cirulli, N.; Cantore, S.; Ballini, A.; Perillo, L.; Giannico, O.V.; Tafuri, S.; De Vito, D. Prevalence of caries and dental mal-occluisons in the apulian paediatric population: An epidemiological study. Eur. J. Paediatr. Dent. 2019, 20, 100–104. [Google Scholar] [CrossRef]
- Cantore, S.; Mirgaldi, R.; Ballini, A.; Coscia, M.F.; Scacco, S.; Papa, F.; Inchingolo, F.; Dipalma, G.; De Vito, D. Cytokine gene polymorphisms associate with microbiogical agents in periodontal disease: Our experience. Int. J. Med Sci. 2014, 11, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Ballini, A.; Dipalma, G.; Isacco, C.G.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; Nguyễn, K.C.D.; Scacco, S.; Calvani, M.; Boddi, A.; et al. Oral microbiota and immune system crosstalk: A translational research. Biology 2020, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Martelli, F.S.; Isacco, C.G.; Borsani, E.; Cantore, S.; Corcioli, F.; Boddi, A.; Nguyễn, K.C.D.; De Vito, D.; Aityan, S.K.; et al. Chronic periodontitis and immunity, towards the implementation of a personalized medicine: A translational research on gene single nucleotide polymorphisms (SNPs) linked to chronic oral dysbiosis in 96 Caucasian patients. Biomedicines 2020, 8, 115. [Google Scholar] [CrossRef] [PubMed]
Phenotype | N | Sex | Ethnicity * | |||
---|---|---|---|---|---|---|
Female | Male | White | Black | Other | ||
Edentulous by Age 30 | 30 | 12 | 18 | 30 | 0 | 0 |
Missing mandibular first molars by age 30 | 267 | 136 | 131 | 188 | 70 | 9 |
Missing mandibular second molars by age 30 | 180 | 98 | 82 | 130 | 45 | 5 |
Caries-free | 161 | 87 | 74 | 127 | 31 | 3 |
Phenotype | SNP | Affected | Caries-Free at Age 60 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
AA * | AB | BB | AA | AB | BB | |||
Edentulous by age 30 | rs3790506 | 4 | 11 | 9 | 6 | 25 | 35 | 0.35 |
rs4694075 | 6 | 14 | 7 | 17 | 27 | 21 | 0.66 | |
rs12640848 | 7 | 7 | 16 | 22 | 28 | 25 | 0.15 | |
rs27565 | 5 | 11 | 5 | 15 | 23 | 25 | 0.35 | |
rs11362 | 6 | 12 | 8 | 19 | 27 | 22 | 0.83 | |
rs1784418 | 7 | 16 | 6 | 6 | 46 | 22 | 0.08 | |
rs3736309 | 2 | 12 | 16 | 4 | 15 | 53 | 0.12 | |
rs6574293 | 0 | 4 | 21 | 2 | 11 | 56 | 0.69 | |
rs10132091 | 5 | 10 | 9 | 13 | 36 | 20 | 0.65 | |
rs2619112 | 4 | 10 | 13 | 13 | 36 | 22 | 0.28 | |
rs7217186 | 3 | 11 | 9 | 16 | 37 | 15 | 0.23 | |
rs2235091 | 1 | 7 | 10 | 8 | 24 | 25 | 0.53 | |
rs198968 | 8 | 9 | 12 | 14 | 18 | 41 | 0.39 | |
rs5997096 | 0 | 5 | 16 | 2 | 14 | 47 | 0.71 | |
Missing mandibular first molars by age 30 | rs3790506 | 16 | 47 | 111 | 6 | 25 | 35 | 0.25 |
rs4694075 | 42 | 89 | 48 | 17 | 27 | 21 | 0.52 | |
rs12640848 | 68 | 51 | 75 | 22 | 28 | 25 | 0.17 | |
rs27565 | 34 | 68 | 59 | 15 | 23 | 25 | 0.73 | |
rs11362 | 40 | 72 | 58 | 19 | 27 | 22 | 0.78 | |
rs1784418 | 17 | 118 | 60 | 6 | 46 | 22 | 0.97 | |
rs3736309 | 8 | 49 | 142 | 4 | 15 | 53 | 0.73 | |
rs6574293 | 4 | 34 | 142 | 2 | 11 | 56 | 0.83 | |
rs10132091 | 35 | 86 | 62 | 13 | 36 | 20 | 0.72 | |
rs2619112 | 36 | 105 | 49 | 13 | 36 | 22 | 0.7 | |
rs7217186 | 48 | 78 | 57 | 16 | 37 | 15 | 0.26 | |
rs2235091 | 14 | 51 | 59 | 8 | 24 | 25 | 0.83 | |
rs198968 | 45 | 31 | 111 | 14 | 18 | 41 | 0.29 | |
rs5997096 | 1 | 50 | 108 | 2 | 14 | 47 | 0.15 | |
Missing mandibular second molars by age 30 | rs3790506 | 12 | 35 | 81 | 6 | 25 | 35 | 0.31 |
rs4694075 | 32 | 62 | 34 | 17 | 27 | 21 | 0.62 | |
rs12640848 | 54 | 34 | 55 | 22 | 28 | 25 | 0.1 | |
rs27565 | 31 | 50 | 39 | 15 | 23 | 25 | 0.62 | |
rs11362 | 35 | 54 | 35 | 19 | 27 | 22 | 0.82 | |
rs1784418 | 12 | 84 | 46 | 6 | 46 | 22 | 0.91 | |
rs3736309 | 7 | 35 | 105 | 4 | 15 | 53 | 0.87 | |
rs6574293 | 4 | 21 | 106 | 2 | 11 | 56 | 1 | |
rs10132091 | 29 | 62 | 42 | 13 | 36 | 20 | 0.75 | |
rs2619112 | 21 | 80 | 37 | 13 | 36 | 22 | 0.6 | |
rs7217186 | 33 | 60 | 38 | 16 | 37 | 15 | 0.46 | |
rs2235091 | 10 | 36 | 39 | 8 | 24 | 25 | 0.92 | |
rs198968 | 30 | 29 | 79 | 14 | 18 | 41 | 0.8 | |
rs5997096 | 0 | 39 | 76 | 2 | 14 | 47 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, A.M.; Bezamat, M.; Modesto, A.; Vieira, A.R. Biomarkers for Lifetime Caries-Free Status. J. Pers. Med. 2021, 11, 23. https://doi.org/10.3390/jpm11010023
Kelly AM, Bezamat M, Modesto A, Vieira AR. Biomarkers for Lifetime Caries-Free Status. Journal of Personalized Medicine. 2021; 11(1):23. https://doi.org/10.3390/jpm11010023
Chicago/Turabian StyleKelly, Ariana M., Mariana Bezamat, Adriana Modesto, and Alexandre R. Vieira. 2021. "Biomarkers for Lifetime Caries-Free Status" Journal of Personalized Medicine 11, no. 1: 23. https://doi.org/10.3390/jpm11010023
APA StyleKelly, A. M., Bezamat, M., Modesto, A., & Vieira, A. R. (2021). Biomarkers for Lifetime Caries-Free Status. Journal of Personalized Medicine, 11(1), 23. https://doi.org/10.3390/jpm11010023