Biomarkers for Lifetime Caries-Free Status
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edelstein, B.L. The dental caries pandemic and disparities problem. BMC Oral Health 2006, 6, S2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.; Lanphear, B.; Hornung, R.; Flora, D.; Martinez-Mier, E.A.; Neufeld, R.; Ayotte, P.; Muckle, G.; Till, C. Association between maternal fluoride exposure during pregnancy and IQ scores in offspring in Canada. JAMA Pediatr. 2019, 173, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Kaste, L.M.; Selwitz, R.H.; Oldakowski, R.J.; Brunelle, J.A.; Winn, D.M.; Brown, L.J. Coronal caries in the primary and permanent dentition of children and adolescents 1–17 years of age: United States, 1988–1991. J. Dent. Res. 1996, 75, 631–641. [Google Scholar] [CrossRef]
- Lloyd, P.; MacLaren, D. Should We tax sugar and if so how? Aust. Econ. Rev. 2019, 52, 19–40. [Google Scholar] [CrossRef]
- Amoo-Achampong, F.; Vitunac, D.E.; Deeley, K.; Modesto, A.; Vieira, A.R. Complex patterns of response to oral hygiene instructions: Longitudinal evaluation of periodontal patients. BMC Oral Health 2018, 18, 72. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Ho, B.; Deeley, K.; Briseño-Ruiz, J.; Faraco, I.M., Jr.; Schupack, B.I.; Brancher, J.A.; Pecharki, G.D.; Küchler, E.C.; Tannure, P.N.; et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS ONE 2012, 7, e45022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, A.R.; Modesto, A.; Marazita, M.L. Caries: Review of human genetics research. Caries Res. 2014, 48, 491–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayram, M.; Deeley, K.; Reis, M.F.; Trombetta, V.M.; Ruff, T.D.; Sencak, R.C.; Hummel, M.; Dizak, P.M.; Washam, K.; Romanos, H.F.; et al. Genetic influences on dental enamel that impact caries differ between the primary and permanent dentitions. Eur. J. Oral Sci. 2015, 123, 327–334. [Google Scholar] [CrossRef]
- Shaffer, J.R.; Wang, X.; Feingold, E.; Lee, M.; Begum, F.; Weeks, D.E.; Cuenco, K.T.; Barmada, M.M.; Wendell, S.K.; Crosslin, D.R.; et al. Genome-wide association scan for childhood caries implicates novel genes. J. Dent. Res. 2011, 90, 1457–1462. [Google Scholar] [CrossRef] [Green Version]
- Shungin, D.; Haworth, S.; Divaris, K.; Agler, C.S.; Kamatani, Y.; Lee, M.K.; Grinde, K.; Hindy, G.; Alaraudanjoki, V.; Pesonen, P.; et al. Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. Nat. Commun. 2019, 10, 2773. [Google Scholar] [CrossRef] [Green Version]
- Patir, A.; Seymen, F.; Yildirim, M.; Deeley, K.; Cooper, M.E.; Marazita, M.L.; Vieira, A.R. Enamel formation genes are associated with high caries experience in Turkish children. Caries Res. 2008, 42, 394–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, A.R.; Marazita, M.; Goldstein-McHenry, T. Genome-wide scan finds suggestive caries loci. J. Dent. Res. 2008, 87, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Bezamat, M.; Harrison, B.; Zhou, Y.; Glickman, K.M.; Telles, V.; Guirguis, C.; Modesto, A.; Vieira, A.R. Phenome-wide scan finds potential orofacial risk markers for cancer. Sci. Rep. 2020, 10, 4869. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, A.R.; Silva, M.B.; Souza, K.K.A.; Filho, A.V.A.; Rosenblatt, A.; Modesto, A. A pragmatic study shows failure of dental composite fillings is genetically determined: A contribution to the discussion on dental amalgams. Front. Med. 2017, 4, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeley, K.; Letra, A.; Rose, E.K.; Brandon, C.A.; Resick, J.M.; Marazita, M.L.; Vieira, A.R. Possible association of amelogenin to high caries experience in a Guatemalan-Mayan population. Caries Res. 2008, 42, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozturk, A.; Famili, P.; Vieira, A.R. The antimicrobial peptide DEFB1 is associated with caries. J. Dent. Res. 2010, 89, 631–636. [Google Scholar] [CrossRef]
- Shimizu, T.; Deeley, K.; Briseño-Ruiz, J.; Faraco, I.M., Jr.; Poletta, F.A.; Brancher, J.A.; Pecharki, G.D.; Küchler, E.C.; Tannure, P.N.; Lips, A.; et al. Fine-mapping of 5q12.1–13.3 unveils new genetic contributors to caries. Caries Res. 2013, 47, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Ergöz, N.; Seymen, F.; Gencay, K.; Tamay, Z.; Deeley, K.; Vinski, S.; Vieira, A.R. Genetic variation in ameloblastin is associated with caries in asthmatic children. Eur. Arch. Paediatr. Dent. 2014, 15, 211–216. [Google Scholar] [CrossRef]
- Krasone, K.; Lace, B.; Akota, I.; Care, R.; Deeley, K.; Küchler, E.C.; Vieira, A.R. Genetic variation in the promoter region of beta-defensin 1 (DEFB 1) is associated with high caries experience in children born with cleft lip and palate. Acta Odontol. Scand. 2014, 72, 235–240. [Google Scholar] [CrossRef]
- Weber, M.L.; Hsin, H.Y.; Kalay, E.; Brožková, D.S.; Shimizu, T.; Bayram, M.; Deeley, K.; Küchler, E.C.; Forella, J.; Ruff, T.D.; et al. Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay. BMC Med. Genet. 2014, 15, 81. [Google Scholar] [CrossRef] [Green Version]
- Abbasoğlu, Z.; Tanboğa, I.; Küchler, E.C.; Deeley, K.; Weber, M.; Kaspar, C.; Korachi, M.; Vieira, A.R. Early childhood caries is associated with genetic variants in enamel formation and immune response genes. Caries Res. 2015, 49, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Anjomshoaa, I.; Briseño-Ruiz, J.; Deeley, K.; Poletta, F.A.; Mereb, J.C.; Leite, A.L.; Barreta, P.A.T.M.; Silva, T.L.; Dizak, P.; Ruff, T.; et al. Aquaporin 5 interacts with fluoride and possibly protects against caries. PLoS ONE 2015, 10, e0143068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, A.V.; Calixto, M.S.; Deeley, K.; Santos, N.; Rosenblatt, A.; Vieira, A.R. MMP20 rs1784418 protects certain populations against caries. Caries Res. 2017, 51, 46–51. [Google Scholar] [CrossRef]
- Vieira, A.R.; Bayram, M.; Seymen, F.; Sencak, R.C.; Lippert, F.; Modesto, A. In vitro acid-mediated initial dental enamel loss is associated with genetic variants previously linked to caries experience. Front. Physiol. 2017, 8, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranade, K.; Chang, M.-S.; Ting, C.-T.; Pei, D.; Hsiao, C.-F.; Olivier, M.; Pesich, R.; Hebert, J.; Chen, Y.-D.I.; Dzau, V.J.; et al. High-throughput genotyping with single nucleotide polymorphisms. Genome Res. 2001, 11, 1262–1268. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Calton, M.A.; Ersoy, B.A.; Zhang, S.; Kane, J.P.; Malloy, M.J.; Pullinger, C.R.; Bromberg, Y.; Pennacchio, L.E.; Dent, R.; McPherson, R.; et al. Association of functionally significant Melanocortin-4 but not Melanocortin-3 receptor mutations with severe adult obesity in a large North American case-control study. Hum. Mol. Genet. 2008, 18, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Uhlen, M.M.; Stenhagen, K.R.; Dizak, P.M.; Holme, B.; Mulic, A.; Tveit, A.B.; Vieira, A.R. Genetic variation may explain why females are less susceptible to dental erosion. Eur. J. Oral Sci. 2016, 124, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Slayton, R.L.; Cooper, M.E.; Marazita, M.L. Tuftelin, mutans streptococci, and dental caries susceptibility. J. Dent. Res. 2005, 84, 711–714. [Google Scholar] [CrossRef]
- Weber, M.; Søvik, J.B.; Mulic, A.; Deeley, K.; Tveit, A.B.; Forella, J.; Shirey, N.; Vieira, A.R. Redefining the phenotype of dental caries. Caries Res. 2018, 52, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Llano, E.; Pendás, A.M.; Knäuper, V.; Sorsa, T.; Salo, T.; Salido, E.; Murphy, G.; Simmer, J.P.; Bartlett, J.D.; López-Otín, C. Identification and structural and functional characterization of human enamelysin (MMP-20). Biochemistry 1997, 36, 15101–15108. [Google Scholar] [CrossRef] [PubMed]
- Väänänen, A.; Tjäderhane, L.; Eklund, L.; Heljasvaara, R.; Pihlajaniemi, T.; Herva, R.; Ding, Y.; Bartlett, J.D.; Salo, T. Expression of collagen XVIII and MMP-20 in developing teeth and odontogenic tumors. Matrix Biol. 2004, 23, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Tannure, P.N.; Küchler, E.C.; Lips, A.; Costa, M.C.; Luiz, R.R.; Granjeiro, J.M.; Vieira, A.R. Genetic variation in MMP20 contributes to higher caries experience. J. Dent. 2012, 40, 381–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antunes, L.A.; Antunes, L.S.; Küchler, E.C.; Lopes, L.B.; Moura, A.; Bigonha, R.S.; Abreu, F.V.; Granjeiro, J.M.; Amorim, L.M.F.; Paixão, I.C.N.P. Analysis of the association between polymorphisms in MMP2, MMP3, MMP9, MMP20, TIMP1, and TIMP2 genes with white spot lesions and early childhood caries. Int. J. Paediatr. Dent. 2016, 26, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Chaussain, C.; Bouazza, N.; Gasse, B.; Laffont, A.G.; Vital, S.O.; Davit-Béal, T.; Moulis, E.; Chabadel, O.; Hennequin, M.; Courson, F.; et al. Dental caries and enamelin haplotype. J. Dent. Res. 2014, 93, 360–365. [Google Scholar] [CrossRef] [PubMed]
- McGarvey, E.L.; Leon-Verdin, M.; Killos, L.F.; Guterbock, T.; Cohn, W.F. Health disparities between Appalachian and non-Appalachian counties in Virginia USA. J. Community Health 2011, 36, 348–356. [Google Scholar] [CrossRef] [Green Version]
- Vieira, A.R.; Hilands, K.M.; Braun, T.W. Saving more teeth—A case for personalized care. J. Pers. Med. 2015, 5, 30–35. [Google Scholar] [CrossRef]
- Vieira, A.R.; McHenry, T.G.; Daack-Hirsch, S.; Murray, J.C.; Marazita, M.L. Candidate gene/loci studies in cleft lip/palate and dental anomalies finds novel susceptibility genes for clefts. Genet. Med. 2008, 10, 668–674. [Google Scholar] [CrossRef] [Green Version]
- Cirulli, N.; Cantore, S.; Ballini, A.; Perillo, L.; Giannico, O.V.; Tafuri, S.; De Vito, D. Prevalence of caries and dental mal-occluisons in the apulian paediatric population: An epidemiological study. Eur. J. Paediatr. Dent. 2019, 20, 100–104. [Google Scholar] [CrossRef]
- Cantore, S.; Mirgaldi, R.; Ballini, A.; Coscia, M.F.; Scacco, S.; Papa, F.; Inchingolo, F.; Dipalma, G.; De Vito, D. Cytokine gene polymorphisms associate with microbiogical agents in periodontal disease: Our experience. Int. J. Med Sci. 2014, 11, 674–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballini, A.; Dipalma, G.; Isacco, C.G.; Boccellino, M.; Di Domenico, M.; Santacroce, L.; Nguyễn, K.C.D.; Scacco, S.; Calvani, M.; Boddi, A.; et al. Oral microbiota and immune system crosstalk: A translational research. Biology 2020, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Martelli, F.S.; Isacco, C.G.; Borsani, E.; Cantore, S.; Corcioli, F.; Boddi, A.; Nguyễn, K.C.D.; De Vito, D.; Aityan, S.K.; et al. Chronic periodontitis and immunity, towards the implementation of a personalized medicine: A translational research on gene single nucleotide polymorphisms (SNPs) linked to chronic oral dysbiosis in 96 Caucasian patients. Biomedicines 2020, 8, 115. [Google Scholar] [CrossRef] [PubMed]
Phenotype | N | Sex | Ethnicity * | |||
---|---|---|---|---|---|---|
Female | Male | White | Black | Other | ||
Edentulous by Age 30 | 30 | 12 | 18 | 30 | 0 | 0 |
Missing mandibular first molars by age 30 | 267 | 136 | 131 | 188 | 70 | 9 |
Missing mandibular second molars by age 30 | 180 | 98 | 82 | 130 | 45 | 5 |
Caries-free | 161 | 87 | 74 | 127 | 31 | 3 |
Phenotype | SNP | Affected | Caries-Free at Age 60 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
AA * | AB | BB | AA | AB | BB | |||
Edentulous by age 30 | rs3790506 | 4 | 11 | 9 | 6 | 25 | 35 | 0.35 |
rs4694075 | 6 | 14 | 7 | 17 | 27 | 21 | 0.66 | |
rs12640848 | 7 | 7 | 16 | 22 | 28 | 25 | 0.15 | |
rs27565 | 5 | 11 | 5 | 15 | 23 | 25 | 0.35 | |
rs11362 | 6 | 12 | 8 | 19 | 27 | 22 | 0.83 | |
rs1784418 | 7 | 16 | 6 | 6 | 46 | 22 | 0.08 | |
rs3736309 | 2 | 12 | 16 | 4 | 15 | 53 | 0.12 | |
rs6574293 | 0 | 4 | 21 | 2 | 11 | 56 | 0.69 | |
rs10132091 | 5 | 10 | 9 | 13 | 36 | 20 | 0.65 | |
rs2619112 | 4 | 10 | 13 | 13 | 36 | 22 | 0.28 | |
rs7217186 | 3 | 11 | 9 | 16 | 37 | 15 | 0.23 | |
rs2235091 | 1 | 7 | 10 | 8 | 24 | 25 | 0.53 | |
rs198968 | 8 | 9 | 12 | 14 | 18 | 41 | 0.39 | |
rs5997096 | 0 | 5 | 16 | 2 | 14 | 47 | 0.71 | |
Missing mandibular first molars by age 30 | rs3790506 | 16 | 47 | 111 | 6 | 25 | 35 | 0.25 |
rs4694075 | 42 | 89 | 48 | 17 | 27 | 21 | 0.52 | |
rs12640848 | 68 | 51 | 75 | 22 | 28 | 25 | 0.17 | |
rs27565 | 34 | 68 | 59 | 15 | 23 | 25 | 0.73 | |
rs11362 | 40 | 72 | 58 | 19 | 27 | 22 | 0.78 | |
rs1784418 | 17 | 118 | 60 | 6 | 46 | 22 | 0.97 | |
rs3736309 | 8 | 49 | 142 | 4 | 15 | 53 | 0.73 | |
rs6574293 | 4 | 34 | 142 | 2 | 11 | 56 | 0.83 | |
rs10132091 | 35 | 86 | 62 | 13 | 36 | 20 | 0.72 | |
rs2619112 | 36 | 105 | 49 | 13 | 36 | 22 | 0.7 | |
rs7217186 | 48 | 78 | 57 | 16 | 37 | 15 | 0.26 | |
rs2235091 | 14 | 51 | 59 | 8 | 24 | 25 | 0.83 | |
rs198968 | 45 | 31 | 111 | 14 | 18 | 41 | 0.29 | |
rs5997096 | 1 | 50 | 108 | 2 | 14 | 47 | 0.15 | |
Missing mandibular second molars by age 30 | rs3790506 | 12 | 35 | 81 | 6 | 25 | 35 | 0.31 |
rs4694075 | 32 | 62 | 34 | 17 | 27 | 21 | 0.62 | |
rs12640848 | 54 | 34 | 55 | 22 | 28 | 25 | 0.1 | |
rs27565 | 31 | 50 | 39 | 15 | 23 | 25 | 0.62 | |
rs11362 | 35 | 54 | 35 | 19 | 27 | 22 | 0.82 | |
rs1784418 | 12 | 84 | 46 | 6 | 46 | 22 | 0.91 | |
rs3736309 | 7 | 35 | 105 | 4 | 15 | 53 | 0.87 | |
rs6574293 | 4 | 21 | 106 | 2 | 11 | 56 | 1 | |
rs10132091 | 29 | 62 | 42 | 13 | 36 | 20 | 0.75 | |
rs2619112 | 21 | 80 | 37 | 13 | 36 | 22 | 0.6 | |
rs7217186 | 33 | 60 | 38 | 16 | 37 | 15 | 0.46 | |
rs2235091 | 10 | 36 | 39 | 8 | 24 | 25 | 0.92 | |
rs198968 | 30 | 29 | 79 | 14 | 18 | 41 | 0.8 | |
rs5997096 | 0 | 39 | 76 | 2 | 14 | 47 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, A.M.; Bezamat, M.; Modesto, A.; Vieira, A.R. Biomarkers for Lifetime Caries-Free Status. J. Pers. Med. 2021, 11, 23. https://doi.org/10.3390/jpm11010023
Kelly AM, Bezamat M, Modesto A, Vieira AR. Biomarkers for Lifetime Caries-Free Status. Journal of Personalized Medicine. 2021; 11(1):23. https://doi.org/10.3390/jpm11010023
Chicago/Turabian StyleKelly, Ariana M., Mariana Bezamat, Adriana Modesto, and Alexandre R. Vieira. 2021. "Biomarkers for Lifetime Caries-Free Status" Journal of Personalized Medicine 11, no. 1: 23. https://doi.org/10.3390/jpm11010023
APA StyleKelly, A. M., Bezamat, M., Modesto, A., & Vieira, A. R. (2021). Biomarkers for Lifetime Caries-Free Status. Journal of Personalized Medicine, 11(1), 23. https://doi.org/10.3390/jpm11010023