Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = electrorheological actuator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4527 KB  
Article
High-Transparency Linear Actuator Using an Electromagnetic Brake for Damping Modulation in Physical Human–Robot Interaction
by Zahid Ullah, Thachapan Sermsrisuwan, Khemwutta Pornpipatsakul, Ronnapee Chaichaowarat and Witaya Wannasuphoprasit
J. Sens. Actuator Netw. 2024, 13(5), 65; https://doi.org/10.3390/jsan13050065 - 10 Oct 2024
Cited by 9 | Viewed by 2367
Abstract
Enhancing the transparency of high-transmission-ratio linear actuators is crucial for improving the safety and capability of high-force robotic systems having physical contact with humans in unstructured environments. However, realizing such enhancement is challenging. A proposed solution for active body weight support systems involves [...] Read more.
Enhancing the transparency of high-transmission-ratio linear actuators is crucial for improving the safety and capability of high-force robotic systems having physical contact with humans in unstructured environments. However, realizing such enhancement is challenging. A proposed solution for active body weight support systems involves employing a macro–mini linear actuator incorporating an electrorheological-fluid brake to connect a high-force unit with an agile, highly back-drivable unit. This paper introduces the use of an electromagnetic (EM) brake with reduced rotor inertia to address this challenge. The increased torque capacity of the EM brake enables integration with a low-gear-ratio linear transmission. The agile translation of the endpoint is propelled by a low-inertia motor (referred to as the “mini”) via a pulley-belt mechanism to achieve high transparency. The rotor of the EM brake is linked to the pulley. Damping modulation under high driving force is achieved through the adjustment of the brake torque relative to the rotational speed of the pulley. When the brake is engaged, it prevents any relative motion between the endpoint and the moving carrier. The endpoint is fully controlled by the ball screw of the high-force unit, referred to as the “macro”. A scaled prototype was constructed to experimentally characterize the damping force generated by the mini motor and the EM brake. The macro–mini linear actuator, equipped with an intrinsic failsafe feature, can be utilized for active body weight support systems that demand high antigravity force. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

12 pages, 5588 KB  
Article
Development of Novel Hydraulic 3D Printed Actuator Using Electrorheological Fluid for Robotic Endoscopy
by Fabian Sadi, Jan Holthausen, Jan Stallkamp and Marius Siegfarth
Actuators 2024, 13(4), 119; https://doi.org/10.3390/act13040119 - 23 Mar 2024
Cited by 9 | Viewed by 2498
Abstract
Endoscopy has made a significant and noteworthy contribution to the field of medical science and technology. Nevertheless, its potential remains constrained due to the limited availability of rigid or flexible endoscopes. This paper introduces a novel hydraulic actuator based on electrorheological fluid (ERF) [...] Read more.
Endoscopy has made a significant and noteworthy contribution to the field of medical science and technology. Nevertheless, its potential remains constrained due to the limited availability of rigid or flexible endoscopes. This paper introduces a novel hydraulic actuator based on electrorheological fluid (ERF) as a pivotal advancement in bridging the existing gap within the realm of endoscopy. Following a comprehensive introduction that briefly outlines the electrorheological effect, the subsequent section is dedicated to the elucidation of the actuator’s development process. Challenges arise, particularly in terms of miniaturization and the realization of a hydraulically sealed system with integrated valve electrodes. An internal electrorheological valve system consisting of four valves that are controlled using a pulse-width modulated high voltage was suitable for position control of the antagonistic hydraulic actuators. High-precision stereolithography (SLA) printing has proven practical for manufacturing actuator components. For functional testing, a test bench was set up in which the actuator follows a setpoint through a PI control loop. The control deviation ranged from 0.6 to 1 degree, with a response time between 6 and 8 s. The experiments have demonstrated that through the use of ERF and integrated valve electrodes, a miniaturized functional actuator can be constructed. Full article
(This article belongs to the Special Issue Soft Actuators for Medical Robotics)
Show Figures

Figure 1

23 pages, 4780 KB  
Article
Design and Optimization of a Spherical Magnetorheological Actuator
by Jakob Vizjak, Anton Hamler and Marko Jesenik
Mathematics 2023, 11(19), 4098; https://doi.org/10.3390/math11194098 - 27 Sep 2023
Cited by 1 | Viewed by 1561
Abstract
Recently, an increasing number of electromagnetic devices have been using smart fluids. These include ferrofluids, electrorheological fluids, and magnetorheological (MR) fluids. In the paper, magnetorheological fluids are considered for use in a spherical actuator for haptic applications. An approach is presented to the [...] Read more.
Recently, an increasing number of electromagnetic devices have been using smart fluids. These include ferrofluids, electrorheological fluids, and magnetorheological (MR) fluids. In the paper, magnetorheological fluids are considered for use in a spherical actuator for haptic applications. An approach is presented to the design and optimization of such a device, using finite element method modelling linked with differential evolution (DE). Much consideration was given to the construction of the objective function to be minimized. A novel approach to objective function assembly was used, using reference values based on the model design and created with parameters set to the midpoint values of the selected range. It was found to be a useful strategy when the reference values are unknown. There were four parameters to be optimized. Three of them gravitated towards the boundary value, and the fourth (actuator radius) was somewhere in between. The value of the objective function reached a minimum in the range of actuator radius between 42.9880 mm and 45.0831 mm, which is about a 5% difference in regard to the actuator radius. Three passes of optimization were performed with similar results, proving the robustness of the algorithm. Full article
(This article belongs to the Special Issue Advances in Numerical Model and Methods for Magnetic Fluids)
Show Figures

Figure 1

31 pages, 5961 KB  
Review
Smart Triboelectric Nanogenerators Based on Stimulus-Response Materials: From Intelligent Applications to Self-Powered Systems
by Xueqing Wang, Qinghao Qin, Yin Lu, Yajun Mi, Jiajing Meng, Zequan Zhao, Han Wu, Xia Cao and Ning Wang
Nanomaterials 2023, 13(8), 1316; https://doi.org/10.3390/nano13081316 - 8 Apr 2023
Cited by 26 | Viewed by 5498
Abstract
Smart responsive materials can react to external stimuli via a reversible mechanism and can be directly combined with a triboelectric nanogenerator (TENG) to deliver various intelligent applications, such as sensors, actuators, robots, artificial muscles, and controlled drug delivery. Not only that, mechanical energy [...] Read more.
Smart responsive materials can react to external stimuli via a reversible mechanism and can be directly combined with a triboelectric nanogenerator (TENG) to deliver various intelligent applications, such as sensors, actuators, robots, artificial muscles, and controlled drug delivery. Not only that, mechanical energy in the reversible response of innovative materials can be scavenged and transformed into decipherable electrical signals. Because of the high dependence of amplitude and frequency on environmental stimuli, self-powered intelligent systems may be thus built and present an immediate response to stress, electrical current, temperature, magnetic field, or even chemical compounds. This review summarizes the recent research progress of smart TENGs based on stimulus-response materials. After briefly introducing the working principle of TENG, we discuss the implementation of smart materials in TENGs with a classification of several sub-groups: shape-memory alloy, piezoelectric materials, magneto-rheological, and electro-rheological materials. While we focus on their design strategy and function collaboration, applications in robots, clinical treatment, and sensors are described in detail to show the versatility and promising future of smart TNEGs. In the end, challenges and outlooks in this field are highlighted, with an aim to promote the integration of varied advanced intelligent technologies into compact, diverse functional packages in a self-powered mode. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications)
Show Figures

Figure 1

17 pages, 4771 KB  
Article
Design and Experimental Evaluation of an Electrorheological Haptic Module with Embedded Sensing
by Alex Mazursky, Jeong-Hoi Koo, Taylor Mason, Sam-Yong Woo and Tae-Heon Yang
Appl. Sci. 2021, 11(16), 7723; https://doi.org/10.3390/app11167723 - 22 Aug 2021
Cited by 7 | Viewed by 4130
Abstract
We present a miniature haptic module based on electrorheological fluid, designed for conveying combined stiffness and vibrotactile sensations at a small scale. Haptic feedback is produced through electrorheological fluid’s controllable resistive force and varies with the actuator’s deformation. To demonstrate the proposed actuator’s [...] Read more.
We present a miniature haptic module based on electrorheological fluid, designed for conveying combined stiffness and vibrotactile sensations at a small scale. Haptic feedback is produced through electrorheological fluid’s controllable resistive force and varies with the actuator’s deformation. To demonstrate the proposed actuator’s feedback in realistic applications, a method for measuring the actuator’s deformation must be implemented for active control. To this end, in this study, we incorporate a sensor design based on a bend-sensitive resistive film to the ER haptic actuator. The combined actuator and sensor module was tested for its ability to simultaneously actuate and sense the actuator’s state under indentation. The results show that the bend sensor can accurately track the actuator’s displacement over its stroke. Thus, the proposed sensor may enable control of the output resistive force according to displacement, which may lead to more informed and engaging combined kinesthetic and tactile feedback. Full article
(This article belongs to the Special Issue Haptics: Technology and Applications2021)
Show Figures

Figure 1

17 pages, 5055 KB  
Article
Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites
by Monika Zygo, Miroslav Mrlik, Marketa Ilcikova, Martina Hrabalikova, Josef Osicka, Martin Cvek, Michal Sedlacik, Barbora Hanulikova, Lukas Munster, David Skoda, Pavel Urbánek, Joanna Pietrasik and Jaroslav Mosnáček
Nanomaterials 2020, 10(3), 591; https://doi.org/10.3390/nano10030591 - 24 Mar 2020
Cited by 18 | Viewed by 4370
Abstract
This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by [...] Read more.
This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP). The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA), poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA) was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Various grafting densities of GO-based materials were investigated, and conductivity was elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation capability, was investigated. It was shown that in addition to the modification of conductivity, the dipole moment of the pendant groups of the grafted polymer chains also plays an important role in the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix, and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency. The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness and thus the ability to reversibly respond to the external light stimulation. Full article
Show Figures

Figure 1

21 pages, 3785 KB  
Review
A State-of-the-Art Review on Robots and Medical Devices Using Smart Fluids and Shape Memory Alloys
by Jung Woo Sohn, Gi-Woo Kim and Seung-Bok Choi
Appl. Sci. 2018, 8(10), 1928; https://doi.org/10.3390/app8101928 - 15 Oct 2018
Cited by 64 | Viewed by 9467
Abstract
Over the last two decades, smart materials have received significant attention over a broad range of engineering applications because of their unique and inherent characteristics for actuating and sensing aspects. In this review article, recent research works on various robots, medical devices and [...] Read more.
Over the last two decades, smart materials have received significant attention over a broad range of engineering applications because of their unique and inherent characteristics for actuating and sensing aspects. In this review article, recent research works on various robots, medical devices and rehabilitation mechanisms whose main functions are activated by smart materials are introduced and discussed. Among many smart materials, electro-rheological fluids, magneto-rheological fluids, and shape memory alloys are considered since there are mostly appropriate application candidates for the robot and medical devices. Many different types of robots proposed to date, such as parallel planar robots, are investigated focusing on design configuration and operating principles. In addition, specific mechanism and operating principles of medical devices and rehabilitation systems are introduced and commented in terms of practical realization. Full article
(This article belongs to the Special Issue Advanced Mobile Robotics)
Show Figures

Figure 1

21 pages, 2141 KB  
Article
Characterization and Testing of an Electrorheological Fluid Valve for Control of ERF Actuators
by Quang-Anh Nguyen, Steven Jens Jorgensen, Joseph Ho and Luis Sentis
Actuators 2015, 4(3), 135-155; https://doi.org/10.3390/act4030135 - 26 Jun 2015
Cited by 23 | Viewed by 14744
Abstract
Previous studies of electrorheological fluids (ERFs) were motivated by brake, clutch, damping, haptic and resistive applications, but never motivated towards developing an ERF based-hydraulic rotary actuator. One design to make such an actuator is to use ERF-based valves. To fully understand the performance [...] Read more.
Previous studies of electrorheological fluids (ERFs) were motivated by brake, clutch, damping, haptic and resistive applications, but never motivated towards developing an ERF based-hydraulic rotary actuator. One design to make such an actuator is to use ERF-based valves. To fully understand the performance of such an actuator, it is imperative to study ERF valves. For this reason, this paper presents a summary of design considerations for creating ERF-based actuators, an ERF-based valve design for an ERF actuator and a new experimental test-bed to obtain viscosity and yield characteristics of the ERF at flow rates as low as 0.049 L/min, an order of magnitude lower than industrial rheometers. The new test-bed successfully measured the dynamic viscosity of the ERF to be at 0.6 Pa-s for low flow rates and 0.2 Pa-s for higher flow rates. The presented valve design can successfully resist 1 MPa of fluid pressure, which is an operation mode higher than any haptic and damping applications in the literature. The experiments also shows that higher flow rates negatively affect the ERF’s yield characteristics for the first time in a situation where the ERF valve completely blocks flow. When the flow rates are increased, the response time to a fully-closed valve increases, the effective yield capability of the ERF decreases and the conductivity of the ERF increases. Full article
(This article belongs to the Special Issue Feature Papers)
Show Figures

Graphical abstract

Back to TopTop