Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = electrophysiological guidance electrode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
62 pages, 4690 KiB  
Review
Functional Nanomaterials for Advanced Bioelectrode Interfaces: Recent Advances in Disease Detection and Metabolic Monitoring
by Junlong Ma, Siyi Yang, Zhihao Yang, Ziliang He and Zhanhong Du
Sensors 2025, 25(14), 4412; https://doi.org/10.3390/s25144412 - 15 Jul 2025
Viewed by 872
Abstract
As critical interfaces bridging biological systems and electronic devices, the performance of bioelectrodes directly determines the sensitivity, selectivity, and reliability of biosensors. Recent advancements in functional nanomaterials (e.g., carbon nanomaterials, metallic nanoparticles, 2D materials) have substantially enhanced the application potential of bioelectrodes in [...] Read more.
As critical interfaces bridging biological systems and electronic devices, the performance of bioelectrodes directly determines the sensitivity, selectivity, and reliability of biosensors. Recent advancements in functional nanomaterials (e.g., carbon nanomaterials, metallic nanoparticles, 2D materials) have substantially enhanced the application potential of bioelectrodes in disease detection, metabolic monitoring, and early diagnosis through strategic material selection, structural engineering, interface modification, and antifouling treatment. This review systematically examines the latest progress in nanomaterial-enabled interface design of bioelectrodes, with particular emphasis on performance enhancements in electrophysiological/electrochemical signal acquisition and multimodal sensing technologies. We comprehensively analyze cutting-edge developments in dynamic metabolic parameter monitoring for chronic disease management, as well as emerging research on flexible, high-sensitivity electrode interfaces for early disease diagnosis. Furthermore, this work focused on persistent technical challenges regarding nanomaterial biocompatibility and long-term operational stability while providing forward-looking perspectives on their translational applications in wearable medical devices and personalized health management systems. The proposed framework offers actionable guidance for researchers in this interdisciplinary field. Full article
(This article belongs to the Special Issue Nanomaterial-Driven Innovations in Biosensing and Healthcare)
Show Figures

Figure 1

26 pages, 6324 KiB  
Article
Functional Enhancement and Characterization of an Electrophysiological Mapping Electrode Probe with Carbonic, Directional Macrocontacts
by Radu C. Popa, Cosmin-Andrei Serban, Andrei Barborica, Ana-Maria Zagrean, Octavian Buiu, Niculae Dumbravescu, Alexandru-Catalin Paslaru, Cosmin Obreja, Cristina Pachiu, Marius Stoian, Catalin Marculescu, Antonio Radoi, Silviu Vulpe and Marian Ion
Sensors 2023, 23(17), 7497; https://doi.org/10.3390/s23177497 - 29 Aug 2023
Viewed by 1862
Abstract
Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts [...] Read more.
Electrophysiological mapping (EM) using acute electrode probes is a common procedure performed during functional neurosurgery. Due to their constructive specificities, the EM probes are lagging in innovative enhancements. This work addressed complementing a clinically employed EM probe with carbonic and circumferentially segmented macrocontacts that are operable both for neurophysiological sensing (“recording”) of local field potentials (LFP) and for test stimulation. This paper illustrates in-depth the development that is based on the direct writing of functional materials. The unconventional fabrication processes were optimized on planar geometry and then transferred to the cylindrically thin probe body. We report and discuss the constructive concept and architecture of the probe, characteristics of the electrochemical interface deduced from voltammetry and chronopotentiometry, and the results of in vitro and in vivo recording and pulse stimulation tests. Two- and three-directional macrocontacts were added on probes having shanks of 550 and 770 μm diameters and 10–23 cm lengths. The graphitic material presents a ~2.7 V wide, almost symmetric water electrolysis window, and an ultra-capacitive charge transfer. When tested with clinically relevant 150 μs biphasic current pulses, the interfacial polarization stayed safely away from the water window for pulse amplitudes up to 9 mA (135 μC/cm2). The in vivo experiments on adult rat models confirmed the high-quality sensing of LFPs. Additionally, the in vivo-prevailing increase in the electrode impedance and overpotential are discussed and modeled by an ionic mobility-reducing spongiform structure; this restricted diffusion model gives new applicative insight into the in vivo-uprisen stimulation overpotential. Full article
Show Figures

Figure 1

13 pages, 8311 KiB  
Article
Technical Issues of Vim–PSA Double-Target DBS for Essential Tremor
by Xusheng Hou, Yixiang Mo, Zhiyuan Zhu, Huan Zhang, Xinzi Liu, Zhihao Zou, Xiaozheng He, Shan Xue, Jiangtao Li, Mengqian Li and Shizhong Zhang
Brain Sci. 2023, 13(4), 566; https://doi.org/10.3390/brainsci13040566 - 28 Mar 2023
Cited by 4 | Viewed by 3948
Abstract
Background: Deep brain stimulation (DBS) is an effective surgical treatment for essential tremor (ET), with the ventral intermediate nucleus (Vim) and posterior subthalamic area (PSA) as the most common targets. The stimulation efficacy of ET with Vim–PSA double-target DBS has been reported. Herein, [...] Read more.
Background: Deep brain stimulation (DBS) is an effective surgical treatment for essential tremor (ET), with the ventral intermediate nucleus (Vim) and posterior subthalamic area (PSA) as the most common targets. The stimulation efficacy of ET with Vim–PSA double-target DBS has been reported. Herein, we aim to propose surgical techniques for Vim–PSA double-target DBS surgery. Methods: This study enrolled six patients with ET who underwent Vim–PSA double-target electrode implantation from October 2019 to May 2022. The targets were located and adjusted using coordinates and multimodality MRI images. A burr hole was accurately drilled in line with the electrode trajectory under the guidance of a stereotactic frame. Novel approaches were adopted during the electrode implantation process for pneumocephalus reduction, including “arachnoid piamater welding” and “water sealing”. Electrophysiological recording was used to identify the implantation sites of the electrodes. A 3D reconstruction model of electrodes and nuclei was established to facilitate programming. Results: The combination of coordinates and multimodality MRI images for target location and adjustment enabled the alignment of Vim and PSA. Postoperative CT scanning showed that the electrode was precisely implanted. Stereotactic guidance facilitated accurate burr hole drilling. “Arachnoid piamater welding” and “water sealing” were efficient in reducing pneumocephalus. Intraoperative electrophysiological verified the efficacy of Vim–PSA double-target DBS surgery. Conclusions: The methods for target location and adjustment, accurate drilling of the burr hole, reduction in pneumocephalus, and intraoperative electrophysiological verification are key issues in DBS surgery targeting both the Vim and PSA. This study may provide technical support for Vim–PSA DBS, especially for surgeons with less experience in functional neurosurgery. Full article
Show Figures

Figure 1

10 pages, 1753 KiB  
Communication
Robot-Assisted Radiofrequency Ablation Combined with Thermodynamic Simulation for Epilepsy Reoperations
by Yu-Chi Wang, Mei-Yun Cheng, Po-Cheng Hung, Cheng-Yen Kuo, Hsiang-Yao Hsieh, Kuang-Lin Lin, Po-Hsun Tu, Chieh-Tsai Wu, Peng-Wei Hsu, Kuo-Chen Wei and Chi-Cheng Chuang
J. Clin. Med. 2022, 11(16), 4804; https://doi.org/10.3390/jcm11164804 - 17 Aug 2022
Cited by 5 | Viewed by 2667
Abstract
Repeat craniotomies to treat recurrent seizures may be difficult, and minimally invasive radiofrequency ablation is an alternative therapy. On the basis of this procedure, we aimed to develop a more reliable methodology which is helpful for institutions where real-time image monitoring or electrophysiologic [...] Read more.
Repeat craniotomies to treat recurrent seizures may be difficult, and minimally invasive radiofrequency ablation is an alternative therapy. On the basis of this procedure, we aimed to develop a more reliable methodology which is helpful for institutions where real-time image monitoring or electrophysiologic guidance during ablation are not available. We used simulation combined with a robot-assisted radiofrequency ablation (S-RARFA) protocol to plan and execute brain epileptic tissue lesioning. Trajectories of electrodes were planned on the robot system, and time-dependent thermodynamics was simulated with radiofrequency parameters. Thermal gradient and margin were displayed on a computer to calculate ablation volume with a mathematic equation. Actual volume was measured on images after the ablation. This small series included one pediatric and two adult patients. The remnant hippocampus, corpus callosum, and irritative zone around arteriovenous malformation nidus were all treated with S-RARFA. The mean error percentage of the volume ablated between preoperative simulation and postoperative measurement was 2.4 ± 0.7%. No complications or newly developed neurologic deficits presented postoperatively, and the patients had little postoperative pain and short hospital stays. In this pilot study, we preliminarily verified the feasibility and safety of this novel protocol. As an alternative to traditional surgeries or real-time monitoring, S-RARFA served as successful seizure reoperation with high accuracy, minimal collateral damage, and good seizure control. Full article
Show Figures

Figure 1

Back to TopTop