Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = electrochemical reduction of Cd(II)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5739 KB  
Article
Electrochemical and Optical Experiments and DFT Calculations of 1,4,6,8-Tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene
by Cornelia Musina (Borsaru), Alina-Giorgiana Brotea, Mihaela Cristea, Gabriela Stanciu, Amalia Stefaniu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(18), 3762; https://doi.org/10.3390/molecules30183762 - 16 Sep 2025
Viewed by 573
Abstract
Due to its conjugated structure, 1,4,6,8-tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene (L) has a high potential for nonlinear optics and coloring. This compound was studied electrochemically using cyclic voltammetry, pulse differential voltammetry and rotating disk voltammetry in organic electrolytes. The main processes occurring during oxidation and [...] Read more.
Due to its conjugated structure, 1,4,6,8-tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene (L) has a high potential for nonlinear optics and coloring. This compound was studied electrochemically using cyclic voltammetry, pulse differential voltammetry and rotating disk voltammetry in organic electrolytes. The main processes occurring during oxidation and reduction scans were highlighted and characterized. Density functional theory (DFT) calculations were conducted to assess the chemical reactivity of this compound. UV-Vis studies of L were performed in acetonitrile to establish the optical parameters in this solvent and its complexing power towards heavy metal (HM) ions. Chemically modified electrodes (CMEs) based on L were prepared by electrooxidation of L in organic electrolytes. To evaluate the electrochemical behavior of the CMEs, they were characterized with a ferrocene redox probe. They were also tested for the analysis of synthetic samples of heavy metal ions (HM): Cd(II), Pb(II), Cu(II) and Hg(II) by anodic stripping. Specific responses were obtained for Pb(II) and Cd(II) ions. The preparation conditions have an influence on the electrochemical responses. This study is relevant for the design and further development of advanced materials based on this azulene for the analysis of HMs in water samples. Electrochemical experiments and DFT calculations recommended L as a new ligand for modifying the electrode surface for the analysis of HMs. Full article
Show Figures

Figure 1

13 pages, 7211 KB  
Article
Electrochemical Sensor for Cu(II) Based on Carbon Nanotubes Functionalized with a Rationally Designed Schiff Base
by Alejandro Tamborelli, Michael López Mujica, Gustavo Servetti, Diego Venegas-Yazigi, Patricio Hermosilla-Ibáñez, Pablo Dalmasso and Gustavo Rivas
Chemosensors 2025, 13(2), 35; https://doi.org/10.3390/chemosensors13020035 - 25 Jan 2025
Cited by 2 | Viewed by 1365
Abstract
This work proposes a new strategy for the electrochemical quantification of Cu(II) using glassy carbon electrodes (GCEs) modified with a nanohybrid of multiwall carbon nanotubes (MWCNTs) non-covalently functionalized with a rationally designed Schiff base containing different groups (SB-dBA). The principle of sensing was [...] Read more.
This work proposes a new strategy for the electrochemical quantification of Cu(II) using glassy carbon electrodes (GCEs) modified with a nanohybrid of multiwall carbon nanotubes (MWCNTs) non-covalently functionalized with a rationally designed Schiff base containing different groups (SB-dBA). The principle of sensing was the complexation of Cu(II) by the Schiff base that supports the MWCNTs at the open-circuit potential, followed by a reduction step at −0.600 V and further linear sweep anodic stripping voltammetry (LSASV) in a 0.200 M acetate buffer solution of pH 5.00. The linear range goes from 10 to 200 μg L−1, with a sensitivity of (0.79 ± 0.07) µA L µg−1 (R2 = 0.991), a detection limit of 3.3 μg L−1, and a reproducibility of 8.0% for the same nanohybrid (nine electrodes) and 9.0% for four different nanohybrids. The proposed sensor was very selective for Cu(II) even in the presence of Pb(II), Fe(II), As(III), Cr(III), Cd(II), and Hg(II), and it was successfully used for the quantification of Cu(II) in different water samples (tap, groundwater, and river) without any pretreatment. Full article
(This article belongs to the Special Issue Carbon Nanotubes for Electrochemical Sensing: Sensors and Platforms)
Show Figures

Figure 1

15 pages, 3243 KB  
Article
Composite Electrodes Based on Carbon Materials Decorated with Hg Nanoparticles for the Simultaneous Detection of Cd(II), Pb(II) and Cu(II)
by Laia L. Fernández, Julio Bastos-Arrieta, Cristina Palet and Mireia Baeza
Chemosensors 2022, 10(4), 148; https://doi.org/10.3390/chemosensors10040148 - 15 Apr 2022
Cited by 10 | Viewed by 3378
Abstract
Monitoring water quality has become a goal to prevent issues related to human health and environmental conditions. In this sense, the concentration of metal ions in water sources is screened, as these are considered persistent contaminants. In this work, we describe the implementation [...] Read more.
Monitoring water quality has become a goal to prevent issues related to human health and environmental conditions. In this sense, the concentration of metal ions in water sources is screened, as these are considered persistent contaminants. In this work, we describe the implementation of customized graphite electrodes decorated with two types of Hg nanoparticles (Hg-NPs), optimized toward the electrochemical detection of Cd, Pb and Cu. Here, we combine Hg, a well-known property to form alloys with other metals, with the nanoscale features of Hg-NPs, resulting in improved electrochemical sensors towards these analytes with a substantial reduction in the used Hg amount. Hg-NPs were synthesized using poly(diallyldimethylammonium) chloride (PDDA) in a combined role as a reducing and stabilizing agent, and then appropriately characterized by means of Transmission Electron Microscopy (TEM) and Zeta Potential. The surface of composite electrodes with optimized graphite content was modified by the drop-casting of the prepared Hg-NPs. The obtained nanocomposite electrodes were morphologically characterized by Scanning Electron Microscopy (SEM), and electrochemically by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The results show that the Hg-NP-modified electrodes present better responses towards Cd(II), Pb(II) and Cu(II) detection in comparison with the bare graphite electrode. Analytical performance of sensors was evaluated by square-wave anodic stripping voltammetry (SWASV), obtaining a linear range of 0.005–0.5 mg·L−1 for Cd2+, of 0.028–0.37 mg·L−1 for Pb2+ and of 0.057–1.1 mg·L−1 for Cu2+. Real samples were analyzed using SWASV, showing good agreement with the recovery values of inductively coupled plasma–mass spectrometry (ICP-MS) measurements. Full article
Show Figures

Graphical abstract

18 pages, 3747 KB  
Article
Surface Characterization of New Azulene-Based CMEs for Sensing
by Veronica Anăstăsoaie, Cristian Omocea, Laura-Bianca Enache, Liana Anicăi, Eleonora-Mihaela Ungureanu, Jacobus (Koos) Frederick van Staden and Marius Enăchescu
Symmetry 2021, 13(12), 2292; https://doi.org/10.3390/sym13122292 - 2 Dec 2021
Cited by 5 | Viewed by 2487
Abstract
Films of 2-(azulen-1-yldiazenyl)-5-phenyl-1,3,4-thiadiazole (T) were successfully deposited on glassy carbon surfaces to prepare chemically modified electrodes (CMEs). Their surface characterization was analyzed by electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). This complexing monomer has been [...] Read more.
Films of 2-(azulen-1-yldiazenyl)-5-phenyl-1,3,4-thiadiazole (T) were successfully deposited on glassy carbon surfaces to prepare chemically modified electrodes (CMEs). Their surface characterization was analyzed by electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). This complexing monomer has been deposited through direct electropolymerization in conditions established during the electrochemical characterization of T performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and rotating disk electrode voltammetry (RDE). These methods put in evidence the high degree of asymmetry of oxidation and reduction curves, which is due to the irreversible processes occurring at opposite potentials. The film formation was confirmed by ferrocene redox assay probe. The properties of the electrodes modified with T (T-CMEs) were investigated for sensing heavy metal (HM) ions in water solutions, with promising results for Pb(II) among Cd(II), Cu(II), and Hg(II) ions. Full article
Show Figures

Figure 1

12 pages, 17466 KB  
Article
Reduction of Cd(II) Ions in the Presence of Tetraethylammonium Cations. Adsorption Effect on the Electrode Process
by Juan Torrent-Burgués
Electrochem 2021, 2(3), 415-426; https://doi.org/10.3390/electrochem2030027 - 23 Jul 2021
Viewed by 3504
Abstract
The effect of the adsorption of tetraethylammonium (TEA) cations, which present both ionic and organic characteristics, on the reduction of Cd(II) ions have been studied from dc and ac measurements at the dropping mercury electrode. The resistance to the charge transfer (Rct) and [...] Read more.
The effect of the adsorption of tetraethylammonium (TEA) cations, which present both ionic and organic characteristics, on the reduction of Cd(II) ions have been studied from dc and ac measurements at the dropping mercury electrode. The resistance to the charge transfer (Rct) and Warburg coefficient (σ) parameters have been determined through impedance measurements. Thus, the global velocity constant has been obtained. The reduction process of Cd(II) in perchloric media is reversible and is affected by the adsorption of TEA cations, especially at high TEA concentrations. Values of E1/2, half wave potential, and DO, diffusion coefficient, obtained from both dc and ac measurements agree. The velocity constants show a decrease as TEA concentration increases, with values ranging from 0.6 to 0.01 cm·s−1. The inhibitory effect of TEA adsorption on the electrode process and the relationship between electrode coverage, θ, and velocity constants, K, using several isotherm equations, have been discussed. The best fit was obtained with the equation K = 0K(1 − θ)a with an a value close to three, indicating a blocking effect and electrostatic repulsion due to TEA. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

Back to TopTop