Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = electric heat pump (EHP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7801 KiB  
Article
A Probabilistic Model for Minimization of Solar Energy Operation Costs as Well as CO2 Emissions in a Multi-Carrier Microgrid (MCMG)
by Hassan Ranjbarzadeh, Seyed Masoud Moghaddas Tafreshi, Mohd Hasan Ali, Abbas Z. Kouzani and Suiyang Khoo
Energies 2022, 15(9), 3088; https://doi.org/10.3390/en15093088 - 23 Apr 2022
Cited by 4 | Viewed by 1996
Abstract
This paper proposes a probabilistic model with the aim to reduce the solar energy operation cost and CO2 emissions of a multi-carrier microgrid. The MCMG in this study includes various elements such as combined heat and power (CHP), electrical heat pump (EHP), [...] Read more.
This paper proposes a probabilistic model with the aim to reduce the solar energy operation cost and CO2 emissions of a multi-carrier microgrid. The MCMG in this study includes various elements such as combined heat and power (CHP), electrical heat pump (EHP), absorption chiller, solar panels, and thermal and electrical storages. A MILP model is proposed to manage the commitment of energy producers, energy storage equipment, the amount of selling/buying of energy with the upstream network, and the energy consumption of the responsible electrical loads for the day-ahead optimal operation of this microgrid. The proposed operation model is formulated as a multi-objective optimization model based on two environmental and economic objectives, using a weighted sum technique and a fuzzy satisfying approach. In this paper, the 2 m + 1-point estimate strategy has been used to model the uncertainties caused by the output power of solar panels and the upstream power supply price. In order to evaluate the performance of the proposed model, and also for minimizing cost and CO2 emissions, the simulation was conducted on two typical cold and hot days. Numerical results show the proposed model’s performance and the effect of electrifying the heating and cooling of the microgrid through the EHP unit on greenhouse gas emissions in the scenarios considered. Full article
Show Figures

Figure 1

31 pages, 2982 KiB  
Article
A GIS-Based Planning Approach for Urban Power and Natural Gas Distribution Grids with Different Heat Pump Scenarios
by Jolando M. Kisse, Martin Braun, Simon Letzgus and Tanja M. Kneiske
Energies 2020, 13(16), 4052; https://doi.org/10.3390/en13164052 - 5 Aug 2020
Cited by 19 | Viewed by 6256
Abstract
Next to building insulation, heat pumps driven by electrical compressors (eHPs) or by gas engines (geHPs) can be used to reduce primary energy demand for heating. They come with different investment requirements, operating costs and emissions caused. In addition, they affect both the [...] Read more.
Next to building insulation, heat pumps driven by electrical compressors (eHPs) or by gas engines (geHPs) can be used to reduce primary energy demand for heating. They come with different investment requirements, operating costs and emissions caused. In addition, they affect both the power and gas grids, which necessitates the assessment of both infrastructures regarding grid expansion planning. To calculate costs and CO2 emissions, 2000 electrical load profiles and 180 different heat demand profiles for single-family homes were simulated and heat pump models were applied. In a case study for a neighborhood energy model, the load profiles were assigned to buildings in an example town using public data on locations, building age and energetic refurbishment variants. In addition, the town’s gas distribution network and low voltage grid were modeled. Power and gas flows were simulated and costs for required grid extensions were calculated for 11% and 16% heat pump penetration. It was found that eHPs have the highest energy costs but will also have the lowest CO2 emissions by 2030 and 2050. For the investigated case, power grid investments of 11,800 euros/year are relatively low compared to gas grid connection costs of 70,400 euros/year. If eHPs and geHPs are combined, a slight reduction of overall costs is possible, but emissions would rise strongly compared to the all-electric case. Full article
Show Figures

Graphical abstract

23 pages, 3376 KiB  
Article
A Novel Hybrid Deep Neural Network Model to Predict the Refrigerant Charge Amount of Heat Pumps
by Jun Kwon Hwang, Patrick Nzivugira Duhirwe, Geun Young Yun, Sukho Lee, Hyeongjoon Seo, Inhan Kim and Mat Santamouris
Sustainability 2020, 12(7), 2914; https://doi.org/10.3390/su12072914 - 6 Apr 2020
Cited by 11 | Viewed by 3672
Abstract
Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP) systems. Because EHP systems show their best performance at optimum charge, predicting the RCA is important. There has been considerable development of data-driven techniques for predicting RCA; however, the [...] Read more.
Improper refrigerant charge amount (RCA) is a recurring fault in electric heat pump (EHP) systems. Because EHP systems show their best performance at optimum charge, predicting the RCA is important. There has been considerable development of data-driven techniques for predicting RCA; however, the current data-driven approaches for estimating RCA suffer from poor generalization and overfitting. This study presents a hybrid deep neural network (DNN) model that combines both a basic DNN model and a thermodynamic model to counter the abovementioned challenges of existing data-driven approaches. The data for designing models were collected from two EHP systems with different specifications, which were used for the training and testing of models. In addition to the data obtained using the basic DNN model, the hybrid DNN model uses the thermodynamic properties as a thermodynamic model. The testing results show that the hybrid DNN model has a prediction performance of 93%, which is 21% higher than that of the basic DNN model. Furthermore, for model training and model testing, the hybrid DNN model has a 6% prediction performance difference, indicating its reliable generalization capabilities. To summarize, the hybrid DNN model improves data-driven approaches and can be used for designing efficient and energy-saving EHP systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

13 pages, 3302 KiB  
Article
Field Test and Analysis of Energy-Saving Effects of Energy-Recovery Ventilators on Heat-Pump Electricity Consumption in a Classroom
by Jae-Sol Choi and Eui-Jong Kim
Sustainability 2019, 11(7), 2069; https://doi.org/10.3390/su11072069 - 8 Apr 2019
Viewed by 3866
Abstract
Energy-recovery ventilators (ERVs) are regarded as important energy-saving systems in buildings. It has been reported that they have high energy-saving rates compared with conventional ventilators that operate without energy recovery, but the saving rates have been obtained typically by employing chamber tests and [...] Read more.
Energy-recovery ventilators (ERVs) are regarded as important energy-saving systems in buildings. It has been reported that they have high energy-saving rates compared with conventional ventilators that operate without energy recovery, but the saving rates have been obtained typically by employing chamber tests and simulations. In this work, a field-test method is proposed that uses a single test room but alternates the tested ventilation modes hourly. This proposed method is useful because an additional comparison room is not always available and can be a source of uncertainty for field tests. The test is performed in a classroom during a heating period, and the results are calibrated to account for different experimental conditions during the test period. The calibrated energy-saving rates indicate the effectiveness of the ERV; however, they are lower in the early hours of the system operation, for two reasons: (1) the maximum power control schemes of the heat pumps are applied for cases where the indoor temperatures are far lower than the set-point temperature; (2) the ventilation load seemingly represents a decreasing proportion of the total heating load in early hours owing to the thermal-capacity effects for the building, which was cooled for many hours. The findings are verified via a chamber test and simulations. As a consequence, it is important to account for actual system characteristics affected by the thermal behaviors of classrooms when the overall performance of a system is evaluated. Full article
(This article belongs to the Collection Green Building Technologies)
Show Figures

Figure 1

21 pages, 12639 KiB  
Article
Optimal Energy Management of Combined Cooling, Heat and Power in Different Demand Type Buildings Considering Seasonal Demand Variations
by Akhtar Hussain, Van-Hai Bui, Hak-Man Kim, Yong-Hoon Im and Jae-Yong Lee
Energies 2017, 10(6), 789; https://doi.org/10.3390/en10060789 - 8 Jun 2017
Cited by 37 | Viewed by 5942
Abstract
In this paper, an optimal energy management strategy for a cooperative multi-microgrid system with combined cooling, heat and power (CCHP) is proposed and has been verified for a test case of building microgrids (BMGs). Three different demand types of buildings are considered and [...] Read more.
In this paper, an optimal energy management strategy for a cooperative multi-microgrid system with combined cooling, heat and power (CCHP) is proposed and has been verified for a test case of building microgrids (BMGs). Three different demand types of buildings are considered and the BMGs are assumed to be equipped with their own combined heat and power (CHP) generators. In addition, the BMGs are also connected to an external energy network (EEN), which contains a large CHP, an adsorption chiller (ADC), a thermal storage tank, and an electric heat pump (EHP). By trading the excess electricity and heat energy with the utility grid and EEN, each BMG can fulfill its energy demands. Seasonal energy demand variations have been evaluated by selecting a representative day for the two extreme seasons (summer and winter) of the year, among the real profiles of year-round data on electricity, heating, and cooling usage of all the three selected buildings. Especially, the thermal energy management aspect is emphasized where, bi-lateral heat trading between the energy supplier and the consumers, so-called energy prosumer concept, has been realized. An optimization model based on mixed integer linear programming has been developed for minimizing the daily operation cost of the EEN while fulfilling the energy demands of the BMGs. Simulation results have demonstrated the effectiveness of the proposed strategy. Full article
(This article belongs to the Special Issue Zero-Carbon Buildings)
Show Figures

Figure 1

16 pages, 748 KiB  
Article
More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China
by Hongyu Long, Kunyao Xu, Ruilin Xu and Jianjun He
Energies 2012, 5(9), 3279-3294; https://doi.org/10.3390/en5093279 - 31 Aug 2012
Cited by 10 | Viewed by 6988 | Correction
Abstract
In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. [...] Read more.
In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs) can provide space heating in the domestic sector), the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power. Full article
(This article belongs to the Special Issue Wind Turbines)
Show Figures

Figure 1

15 pages, 400 KiB  
Article
Incorporating the Variability of Wind Power with Electric Heat Pumps
by Hongyu Long, Ruilin Xu and Jianjun He
Energies 2011, 4(10), 1748-1762; https://doi.org/10.3390/en4101748 - 24 Oct 2011
Cited by 30 | Viewed by 6144
Abstract
With the mass introduction of wind power in Northern China, wind power variability has appeared. In this article, both existing electric heat pumps (EHPs) and coal-fired combined heat and power (CHP) facilities, which are generally equipped with extraction-condensing steam turbines coupled with district [...] Read more.
With the mass introduction of wind power in Northern China, wind power variability has appeared. In this article, both existing electric heat pumps (EHPs) and coal-fired combined heat and power (CHP) facilities, which are generally equipped with extraction-condensing steam turbines coupled with district heating for space heating purposes, are proposed to incorporate the variability of wind power equivalently. The authors’ proposal arises from the facts that: (1) EHPs can provide space heating in the domestic sector with little thermal comfort change (e.g., energy carriers for space heating purposes can be switched from heating water to electricity); (2) coal-fired CHP units in Northern China can usually generate more electrical power corresponding to a shaved thermal power production. Thus, it is suggested that heating water from CHP units be shaved when the wind generation is low due to the variability of wind power, so as to enable more electrical power production and compensate for the corresponding insufficient wind generation. Following this, in the future and for some space heating loads at appropriate distances, electricity used as energy carrier should be converted by electric heat pumps for space heating. Thus, more electricity consumption will be achieved so as to avoid wasting wind power when the wind generation it is high. A numerical simulation is performed in order to illustrate the authors’ proposal. It is shown that the impact of variability of wind generation can be equivalently reduced to a great extent, which enable more wind power integration instead of curtailment and potential energy conservation. Moreover, in contrast to before, both the thermal and electrical power of coal-fired CHP units are no longer constants. In addition, the ratio of electrical to thermal power of CHP units is no longer constant either, and results in less energy consumption compared with fixed ratio. Finally, electricity consumed by end users’ EHPs, which are devoted to space heating for various spatial distances and time points, is figured out. Full article
Show Figures

Figure 1

Back to TopTop