Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = educational seismology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1081 KiB  
Article
A New Method in Certification of Buildings: BCA Method and a Case Study
by Cevdet Emin Ekinci and Belkis Elyigit
Sustainability 2025, 17(15), 6986; https://doi.org/10.3390/su17156986 - 1 Aug 2025
Viewed by 305
Abstract
This study investigates the engineering characteristics of a newly commissioned higher education building through the Bioharmological Conformity Assessment (BCA) method, specifically using the 2020vEB version. The BCA is a novel evaluation approach that assesses whether a building aligns with the identity of its [...] Read more.
This study investigates the engineering characteristics of a newly commissioned higher education building through the Bioharmological Conformity Assessment (BCA) method, specifically using the 2020vEB version. The BCA is a novel evaluation approach that assesses whether a building aligns with the identity of its users and its intended function. The engineering attributes of the structure were assessed across 12 core criteria, encompassing a total of 600 individual parameters. Findings from the BCA inspection indicate that the newly completed building falls into the category of “Near-Standard Building/Minor Modifications Required.” The BCA score was calculated as 398.73, corresponding to a deficiency rate of 25.50%. Notably, significant shortcomings were observed in categories such as user identity and intended use, Physical Characteristics of the Space, and Ecological and Seismological Suitability. Consequently, targeted improvements are necessary to align the building with bioharmological principles, requiring only minor adjustments to rectify the identified deficiencies. Full article
Show Figures

Figure 1

15 pages, 2915 KiB  
Article
Educational Seismology through an Immersive Virtual Reality Game: Design, Development and Pilot Evaluation of User Experience
by Vaia Maragkou, Maria Rangoussi, Ioannis Kalogeras and Nikolaos S. Melis
Educ. Sci. 2023, 13(11), 1088; https://doi.org/10.3390/educsci13111088 - 27 Oct 2023
Cited by 4 | Viewed by 2613
Abstract
Virtual Reality (VR), especially in its immersive form, is a promising technology employed to support education and training in various fields. VR offers unique opportunities to experience situations and environments that are otherwise inaccessible or risky. Educational Seismology aims to inform and educate [...] Read more.
Virtual Reality (VR), especially in its immersive form, is a promising technology employed to support education and training in various fields. VR offers unique opportunities to experience situations and environments that are otherwise inaccessible or risky. Educational Seismology aims to inform and educate the public on earthquakes; to this end, the use of VR is investigated as an attractive solution. VRQuake is an immersive VR application designed and developed for Educational Seismology purposes. VRQuake is structured in five consecutive scenes and is organized as a game. It allows users to interact with virtual objects in real time and apply learned rules and good practices in reaction to an earthquake, thus providing a dynamic learning environment. A pilot evaluation of VRQuake is performed by volunteer university students who play the game and then answer a questionnaire with closed- and open-type questions referring mostly to the user experience. Analysis of the answers has shown positive results regarding usability, clarity and acceptance of the application. Answers are also encouraging as to the educational potential of VRQuake. Furthermore, qualitative analysis of open-type questions has contributed user suggestions and demands that point to interesting new directions for further improvement of user experience and learning outcomes. Full article
(This article belongs to the Special Issue Digital Twins and Future Intelligent Educational Environments)
Show Figures

Figure 1

21 pages, 3462 KiB  
Article
Citizen Science and The University of Queensland Seismograph Stations (UQSS)—A Study of Seismic T Waves in S-W Pacific Ocean
by Colin John Lynam and Asanka Karunaratne
Sustainability 2023, 15(14), 10885; https://doi.org/10.3390/su151410885 - 11 Jul 2023
Cited by 1 | Viewed by 1805
Abstract
Seismologists listen to Earth’s noise as it rips apart (faulting), exudes (volcanoes) and swallows (subducts) large volumes of rock. Your mobile phone is most likely detecting such noise, right now! This paper is about one such specific noise, the T wave. It summarises [...] Read more.
Seismologists listen to Earth’s noise as it rips apart (faulting), exudes (volcanoes) and swallows (subducts) large volumes of rock. Your mobile phone is most likely detecting such noise, right now! This paper is about one such specific noise, the T wave. It summarises an early and successful piece of citizen science, performed within The University of Queensland Seismograph Stations (UQSS) observatory, in cooperation with colleagues at CSIRO. It was designed to encourage young STEM students from Brisbane high schools to engage in “real” research, back in 1995. Bear in mind, this is a time period when science is changing considerably from analog to digital media and operational recording methods. The citizen science students used a pre-prepared decadal collection (1980–1990) of T waves, derived from the Brisbane seismograph (BRS) observatory data catalogue. BRS has been operating since 1937 and is part of the global World-Wide Seismograph Station Network (WWSSN). Fortunately, seismology is a very collaborative field. There is a lot of data analysis involved in the science of recording earthquake signals, with auxiliary definitive catalogues, observers logbooks, housing of the recordings themselves (analog and digital) and the software mediums that change over time. It equally tests housekeeping proficiency, where a maze of record-keeping problems can be encountered in a longitudinal data collection study such as this. Having completed the project report, Earthquake generated T phases on BRS Seismograph (Brisbane, Q’ld) a predictor for Tasman Sea Tsunamis? their (analog) results sat in a cupboard until recently. The project was re-analysed in 2022 for a higher-degree student, discovering a timely climate change implication for the study. The original research question has now been amplified with a brief literature review. We observe that currently in Australia, university and government earth science observatories have diminished, and in their place, public seismic networks (PSN) have evolved, either in backyard sheds or school science labs. We now additionally propose here that the level of expertise required ideally fits the role of advancing citizen science, for a real science advantage. This is already a topical citizen disaster preparedness action area, and we propose that it has applications as a possible educational strategy for citizen engagement in today’s climate emergency. In addition, we are hopeful that other researchers in oceanography will read this paper and decide to explore the ocean’s temperature rise phenomenon through the eyes of seismological observers. Full article
(This article belongs to the Special Issue Citizen Science and Its Role in Education for Sustainable Development)
Show Figures

Figure 1

15 pages, 4839 KiB  
Article
Seismic Observations in Bucharest Area with a Raspberry Shake Citizen Science Network
by Bogdan Zaharia, Bogdan Grecu, Andreea Tolea and Mircea Radulian
Appl. Sci. 2023, 13(9), 5646; https://doi.org/10.3390/app13095646 - 4 May 2023
Viewed by 3528
Abstract
Technological advancements and the appearance of low-cost Raspberry Shake seismographs have enabled the development of citizen science seismic networks in many areas worldwide. These networks can help reduce seismic risk and increase citizens’ understanding of seismology and earthquakes. Such a network exists in [...] Read more.
Technological advancements and the appearance of low-cost Raspberry Shake seismographs have enabled the development of citizen science seismic networks in many areas worldwide. These networks can help reduce seismic risk and increase citizens’ understanding of seismology and earthquakes. Such a network exists in Bucharest, one of the cities in Europe that are struck and affected by strong Vrancea earthquakes. The paper aims to show that data from such networks can be used in both outreach programs and research studies. There are presented, for the first time, seismic observations collected over two years beginning in the summer of 2020 in the Bucharest area based on the low-cost seismometers from the citizen science Raspberry Shake network. A significant number of earthquakes from the Vrancea region were recorded by the Bucharest Raspberry Shake Seismic Network (BRSSN). Some of them were felt by Bucharest inhabitants. The National Institute for Earth Physics in Magurele (Romania) organizes educational events that promote geosciences among the population and presents the tools at its disposal for a better understanding of earthquakes and their effects, contributing this way to the development of the concept of citizen science. Citizens are the first witnesses to seismic events and the citizen science seismic network provides them with the first direct information about the event via web apps available for any internet-connected device. Their involvement as non-professional participants helps in providing data for scientists via questionnaire forms to improve scientific research for earthquake assessment. Since citizen seismometers are installed in urban areas, an analysis of the ambient seismic noise (ASN) was performed in addition to the analysis of recorded seismic events. The analysis indicates that the level of seismic noise is mainly controlled by human activities. At the same time, for one citizen seismometer installed in a school in Bucharest, the results show patterns of noise variations due to students’ activity. Full article
(This article belongs to the Special Issue Road to Smart City with Geohazard Mitigation and Adaptation Measures)
Show Figures

Figure 1

Back to TopTop