Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = dyeable layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5430 KiB  
Article
Dyeable Hydrophilic Surface Modification for PTFE Substrates by Surface Fluorination
by Mizuki Kobayashi, Fumihiro Nishimura, Jae-Ho Kim and Susumu Yonezawa
Membranes 2023, 13(1), 57; https://doi.org/10.3390/membranes13010057 - 2 Jan 2023
Cited by 7 | Viewed by 3143
Abstract
Polytetrafluoroethylene (PTFE) is the most widely used fluoropolymer that has various functionalities such as heat resistance, chemical resistance, abrasion resistance, and non-adhesiveness. However, PTFE is difficult to dye because of its high water repellency. In this study, the PTFE surface was modified by [...] Read more.
Polytetrafluoroethylene (PTFE) is the most widely used fluoropolymer that has various functionalities such as heat resistance, chemical resistance, abrasion resistance, and non-adhesiveness. However, PTFE is difficult to dye because of its high water repellency. In this study, the PTFE surface was modified by a combination of gold sputtering and surface fluorination to improve dyeability. X-ray photoelectron spectroscopy indicated that, compared with the untreated sample, the gold-sputtered and acid-washed surface of PTFE had a negligible number of C–F terminals. Furthermore, the intensity of the C–C peak increased drastically. The polar groups (C=O and C–Fx) increased after surface fluorination, which enhanced the electronegativity of the surface according to the zeta potential results. Dyeing tests with methylene blue basic dye showed that the dye staining intensity on the surface of fluorinated PTFE samples was superior to other samples. It is due to the increased surface roughness and the negatively charged surface of fluorinated PTFE samples. The modified PTFE substrates may find broad applicability for dyeing, hydrophilic membrane filters, and other adsorption needs. Full article
(This article belongs to the Special Issue Surface and Interface Engineering of Polymeric Membrane)
Show Figures

Graphical abstract

11 pages, 6016 KiB  
Article
Improving the Dyeing of Polypropylene by Surface Fluorination
by Masanari Namie, Jae-Ho Kim and Susumu Yonezawa
Colorants 2022, 1(2), 121-131; https://doi.org/10.3390/colorants1020008 - 29 Mar 2022
Cited by 4 | Viewed by 4291
Abstract
The surface of polypropylene (PP) was modified with fluorine gas at 25 °C and 10–380 Torr for 1 h. The surface roughness of the fluorinated PP samples was approximately two times larger than that (5 nm) of the untreated sample. The results of [...] Read more.
The surface of polypropylene (PP) was modified with fluorine gas at 25 °C and 10–380 Torr for 1 h. The surface roughness of the fluorinated PP samples was approximately two times larger than that (5 nm) of the untreated sample. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the bonds (e.g., -C-C- and -CHx) derived from raw PP decreased and were converted into fluorinated bonds (e.g., -CFx) after surface fluorination. These fluorinated bonds showed higher electronegativity according to the zeta potential results. Fluorinated PP could be stained with the methylene blue basic dye because of the increased surface roughness and the negatively charged surface. Full article
(This article belongs to the Special Issue Colorants: Ancient and Modern)
Show Figures

Graphical abstract

Back to TopTop