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Abstract: Polytetrafluoroethylene (PTFE) is the most widely used fluoropolymer that has various
functionalities such as heat resistance, chemical resistance, abrasion resistance, and non-adhesiveness.
However, PTFE is difficult to dye because of its high water repellency. In this study, the PTFE surface
was modified by a combination of gold sputtering and surface fluorination to improve dyeability.
X-ray photoelectron spectroscopy indicated that, compared with the untreated sample, the gold-
sputtered and acid-washed surface of PTFE had a negligible number of C–F terminals. Furthermore,
the intensity of the C–C peak increased drastically. The polar groups (C=O and C–Fx) increased
after surface fluorination, which enhanced the electronegativity of the surface according to the zeta
potential results. Dyeing tests with methylene blue basic dye showed that the dye staining intensity
on the surface of fluorinated PTFE samples was superior to other samples. It is due to the increased
surface roughness and the negatively charged surface of fluorinated PTFE samples. The modified
PTFE substrates may find broad applicability for dyeing, hydrophilic membrane filters, and other
adsorption needs.

Keywords: polytetrafluoroethylene; Au sputtering; surface fluorination; dyeable layer

1. Introduction

Polytetrafluoroethylene (PTFE) has unparalleled heat and chemical resistance among
fluororesins, as well as non-adhesiveness and electrical insulation properties. Because it
has various functions, it is a fluororesin that is widely used industrially in the chemical and
medical fields [1–7]. In particular, PTFE has been used as an attractive membrane material
owing to its superior chemical resistance, good thermal stability, and high mechanical
strength, which makes it widely used in environmental protection, filtration, textiles,
medicine, military, etc. [8–18]. However, PTFE exhibits both hydrophobic and oleophobic
properties owing to its low surface energy. Furthermore, because PTFE has a strong C–F
bond, it does not show significant interaction with some compounds, such as organic
dyes. Organic dyes are helpful for evaluating the adsorption onto PTFE in general. In
dye-related industries, water pollution by organic dyes is regarded as a serious problem.
To better understand this problem, the adsorption of organic dyes onto solid media such
as PTFE has been investigated for a long time [19,20]. However, the hydrophobic nature
of the membrane prevents the penetration of aqueous solutions into the pores, while
the pore size and shape determine the diffusion or convection across the membrane.
Therefore, hydrophilic modifications of PTFE are beneficial for dyeing, metal plating,
and other coating needs [21–25]. Common surface modification methods, such as sodium
naphthalene chemical treatment, high-temperature sintering, and irradiation grafting, have
been carried out [26,27]. However, these methods can readily damage PTFE structures
and cause environmental pollution. As a dry treatment method, plasma treatment is
widely used for the surface modification of PTFE, which can introduce a variety of active
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functional groups on the surface in a short time [28–33]. However, the wettability after
plasma treatment depends on numerous process parameters, such as the type of discharge,
feed gas, working pressure, input power, and treatment time. Furthermore, this method
cannot be used for complex geometric shapes.

In a previous study [34–36], the surfaces of polyethylene terephthalate (PET) and
polycarbonate (PC) were modified by direct fluorination to achieve strong adhesion with
the plating (i.e., good dyeability). The dyeing properties of the fluorinated samples were
enhanced by the increased roughness and hydrophilicity. The process of direct fluorination
involves a gas-phase chemical reaction between fluorine gas (F2) and the polymer surface.
This is an effective chemical method for modifying and controlling the physicochemical
surface properties of polymers. Because it’s harder to break C-F in perfluorinated samples
than C-H in nonperfluorinated samples under the same conditions. In addition, the surface
of polymeric membranes must include adequate pore size, roughness, and wettability for
the adsorption of organic dyes. Ohkubo et al. reported that PTFE can be defluorinated
using an alkali metal amalgam to produce porous carbon with a large surface area [37–39].

In this study, we report on the effects of gold sputtering and surface fluorination on
the dyeing properties of PTFE substrates. The adsorption of organic dyes on PTFE may be
used to remove organic dyes, which are toxic substances in the environment.

2. Materials and Methods
2.1. Surface Modification of PTFE

The entire preparation process for fluorinated PTFE is shown schematically in Figure 1.
PTFE sheets (NAFLON) were obtained from the NICHIAS Corporation, Tokyo, Japan.
PTFE plates (10 × 10 × 1.0 mm) were washed with ethanol to remove organic residues
from the surface. Gold-sputter deposition on PTFE plates was performed using an ion
coater (IC-50, Shimadzu Manufacturing, Kyoto, Japan). The target (99.99% Au) was fixed
horizontally at the top-center of the deposition chamber. The glow discharge was allowed
under low vacuum (less than 20 Pa). The discharge conditions were 6 mA and 1.4 kV for
a sputtering time of 3 min. To dissolve the sputtered gold layers on PTFE, the sample
was soaked in an aqueous solution for 1 min. It was then washed and dried at 40 ◦C for
24 h. Surface fluorination of the Au-coated and washed PTFE samples was carried out
using F2 gas. F2 (99.5% purity) was produced by electrolysis of a KF/HF mixture in HF
solution. The PTFE plates were placed in a nickel reactor (24 mm × 32 mm × 5 mm) and
held at 25 ◦C under vacuum (0.1 Pa) for more than 10 h to eliminate impurities before use.
The fluorination apparatus was explained in a previous paper [40], which used a reaction
temperature of 25 ◦C, a gas pressure of 13–101 kPa, and a reaction time of 1 h. The sample
names and reaction conditions are listed in Table 1.

Table 1. Sample names and reaction conditions.

Sample Name Au Coating Washing by Aqua Regia
Surface Fluorination

Temp. (◦C) Time (h) Pressure (kPa)

untreated - - - - -
Au-P with without - - -

Au-W-P with with - - -
Au-W-13F-P with with

25 1
13

Au-W-101F-P with with 101
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Figure 1. Flow diagram for preparation of fluorinated PTFE.

2.2. Material Characterization

The surface morphologies of the various PTFE samples were observed using scanning
electron microscopy (SEM, S-2400; Hitachi Ltd., Tokyo, Japan). The surface topography
was evaluated using atomic force microscopy (AFM; Nanoscope IIIa, Digital Instruments,
Inc., Tokyo, Japan). Scanning was performed in the tapping mode within an area of
5 × 5 µm2. The arithmetic mean surface roughness (Ra) was determined using the AFM
roughness profile. The static water contact angles of the untreated and modified PTFE
were measured at 25 ◦C using the sessile drop method. A 10 µL water droplet was used
in a telescopic goniometer with a magnification power of 23× and a protractor with a
graduation of 1◦ (Krüss G10, Hamburg, Germany). Five measurements were obtained
at different surface locations on each sample to determine the average value (±2◦). The
surface chemical states of the untreated and modified PTFE were determined using XPS
(JPS-9010, JOEL, Tokyo, Japan). All the binding energies were referenced to a carbon
peak at 284.5 eV. The chemical compositions of the untreated and modified PTFE samples
were examined by Fourier-transform infrared (FTIR) absorption spectroscopy (Nicolet
6700; Thermo Electron Scientific, Waltham, MA, USA). The analysis was performed in
transmittance mode within the range of 500–4000 cm−1, where 32 scans were obtained,
and air background removal was conducted. The zeta potential data of PTFE samples
were measured using a solid sample cell unit with a zeta potential device (ElSZ-2; Otsuka
Electronics Co. Ltd., Osaka, Japan).

2.3. Dye Staining of PTFE

Methylene blue (MB; Fujifilm Wako Chemical Corp., Hirono, Fukushima, Japan) and
Aced Red 52 (AR52; Fujifilm Wako Chemical Corp., Hirono, Fukushima, Japan) were used
as the representative basic and acidic dyes, respectively. Staining solutions containing
0.01 mol/L of dye in ultrapure water were set in a water bath at 80 ◦C, and the PTFE
samples were immersed in the staining solutions for 30 min. The PTFE samples were
subsequently washed with ultrapure water and dried in air. The surface staining of each
sample was evaluated based on the N and S contents determined using XPS. The stability
of the color layer on the PTFE samples was evaluated after sonication in water at 80 kHz for
1 h using an ultrasonic multicleaner (W-115, Honda Electronics Co., Ltd., Toyohashi, Japan).
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3. Results and Discussions
3.1. Surface Modification of PTFE Plates Using Gold Sputtering and Fluorine Gas

Figure 2 shows the photographs and XPS (Au4f) results of the Au-sputtered samples
before and after washing with aqua regia solutions. After Au sputtering, a metal layer
was observed in the Au-P samples. The Au 4f spectra in the XPS results show that the
sputtering layer was Au metal. After washing with the aqua regia solution, the Au layer
was completely removed, as indicated in Figure 2 (Au-W-P).
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Figure 2. Photographs and XPS (Au 4f) results of Au sputtering samples before and after washing
with aqua regia solutions.

The surface morphology and roughness of the PTFE samples were characterized
using SEM and AFM, respectively, as shown in Figure 3. SEM and AFM images indicated
that the untreated PTFE plates had quite smooth and uniform surface with a low surface
roughness of ~8.1 nm (Figure 3). However, the surface morphology clearly changed after
Au sputtering and washing, as shown in the FE-SEM image of the Au-W-P samples. The
surface of the Au-W-P samples had mass buildups or irregular fine cracks and voids,
which were similar to netty pores. This is likely due to the formation of byproducts with
fluoride after Au sputtering, which were subsequently washed away by the aqua regia
solution. When fluoride is removed, some space is created in the form of pores in the
carbon matrix. The surface roughness of the Au-W-P samples increased to 18.7 nm, as
indicated by the AFM results (Figure 3). Furthermore, after surface fluorination, fine
irregularities significantly increased on the surface of the Au-W-13F-P samples and the
surface exhibited valley-shaped morphology. Some rounded products were also observed
on the surface, which may be agglomerations of molecular segments created in the process
of Au sputtering and acid washing. The surface roughness of the Au-W-13F-P samples
was approximately ten times greater than that of the untreated PTFE sample (i.e., 8.1 nm,
indicated by the AFM results (Figure 3). When the fluorine pressure was increased, the
fluoride layer expanded on the PTFE surface. This was due to a decrease in the surface
roughness of the Au-W-101F-P samples.
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Figure 3. SEM images and AFM images of various PTFE samples.

Wettability, which was measured using contact angle measurements, is an important
factor for polymer membranes. The water contact angle of the untreated PTFE sample was
107◦, as shown in Figure 4, whereas those of the surface-modified PTFE samples were lower
owing to the increased surface roughness (Figure 3). However, the water contact angle of
Au-W-101F-P sample (50◦) was lower than that of Au-W-13F-P, despite its lower surface
roughness. The roughness of the PTFE surface increased after Au sputtering and surface
fluorination. Some hydrophilic groups were also generated on the PTFE surface, which
increased the polarity and surface energy; thus, the hydrophilicity of the PTFE surface
improved significantly. This may be attributed mainly to the defluorination of hydrophobic
groups, such as –CF2 on PTFE, due to the gold sputtering and acid washing process.
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The F 1s, O 1s, and C 1s XPS spectra of the untreated and modified PTFE samples are
shown on Figure 5. The F 1s spectra of the untreated PTFE samples indicated strong –CF2
bonding at 689.8 eV, which was almost eliminated after Au sputtering and washing. After
surface fluorination, the main peak was found at 687 eV, which was assigned to –C–Fx
peaks. The intensity of the O 1s peak increased significantly after the Au sputtering and
washing, while it shifted to a higher binding energy after the surface fluorination, as shown
in Figure 5. The elemental compositions of the PTFE samples were also evaluated from
the XPS results (Figure 5), and are presented in Table 2. Notably, the oxygen content of Au-
W-P sample was approximately five times larger than that of the untreated PTFE (4.93%).



Membranes 2023, 13, 57 6 of 12

Furthermore, the fluorine content of the fluorinated samples (i.e., 49.04% and 47.16%)
increased by more than two times that of the Au-W-P sample (i.e., 21.80%). The higher
shift of the O 1s peak in the fluorinated samples is caused by the formation of fluorides
such as –COFx. Evidently, the untreated PTFE shows peaks at 284.4 and 292.4 eV, which are
ascribed to C–C and C–F bonds in PTFE as shown in the C 1s results (Figure 5). However,
after the gold sputtering and washing process for the Au-W-P sample, the C–F peak at
294.4 eV nearly disappeared while the C–C peak at 284.4 eV increased drastically. From the
results of peak separation with Gaussian distributions (dotted line), a new peak was also
found at 286.0 eV, which was assigned to C–O or C–OH bonds. This means that carbon
radicals originating from the defluorination of PTFE reacted with other carbon radicals and
water in the acid solution, thereby resulting in the formation of C–C cross-links [41] and
hydrophilic surfaces. Moreover, after the surface fluorination, these C–C and C–O bonds
changed to either –C=O or O=C–OH, and –C–Fx at 288.4 eV [42]. Notably, the formation
of both polar groups (–C=O and –C–Fx) enhanced the preparation of hydrophilic PTFE
surfaces. The partial polarity of the surface was improved by the addition of F, as its high
electronegativity and acidity easily attracted water as a polar solvent.
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Table 2. Surface elemental composition of PTFE samples evaluated from XPS results (Figure 5).

Sample Name
Surface Composition Ratio (%)

F/C
C O F

untreated 29.19 4.93 65.87 2.26
Au-W-P 52.67 25.53 21.8 0.41

Au-W-13F-P 27.73 23.23 49.04 1.77
Au-W-101F-P 28.67 24.18 47.16 1.64

As shown in Table 2, the F/C elemental composition ratio (2.26) of the untreated
PTFE sample decreased drastically (to 0.41) after the gold sputtering and washing process.
However, the F/C ratio could again be increased (to 1.77) by the surface fluorination
because of the introduction of fluorinated bonds such as C–Fx or C–OF. The effects of the
change in F2 pressure on the F/C ratio on the PTFE surface appear to be insignificant. For
example, increasing the pressure to 101 kPa causes the F/C ratio to decrease slightly to
1.64. This may be attributed to the formation of CF4 or COF2 gas on the surface of the
Au-W-101F-P sample.

The FTIR spectra of the untreated and modified PTFE samples are shown on Figure 6.
The spectrum of the untreated PTFE sample exhibited absorption bands at 1203 and
1147 cm−1 (corresponding to the –CF2 stretching vibration peak). The absorption bands
of the other modified PTFE samples appeared to be the same as those of the untreated
samples. To verify the effects of surface modification on the surface structure of PTFE, the
vertical axis of the FT-IR spectra was enlarged, as shown on Figure 6 (bottom). The new
peak at 1646 cm−1 corresponded to the C=C resonance vibrations in the cross-links of the
Au-W-P samples. After the surface fluorination, the intensities of the absorption bands
at 1726 cm−1 (C=O stretching vibration peak) and 1852 cm−1 (O–F stretching vibration
peak) increased. Moreover, after the gold sputtering and washing process, a broad peak
appeared in the range of 3500–3100 cm−1, corresponding to the OH stretching vibration
peaks. This broad peak was intensified after the surface fluorination at high F2 pressure.
With increasing surface fluorination, the signals indicated a surface rearrangement and
a reaction with hydroxyl groups that were dissociated from the moisture in air, which
bonded to the carbon radicals due to CF4 gasification. This strong hydrophilic bond led to
a decrease in the contact angle with water, as shown in Figure 4.

After surface fluorination, the fluorinated bonds (C–Fx or C–OF) as shown in XPS
results increased on the PTFE surface. Additionally, these fluorinated bonds indicated
high electronegativity from the results of zeta potential (Figure 7). The Zeta potential
(−40.41 mV) of Au-W-13F-P samples was about 5 times negatively larger than that of
untreated sample. This result is similar to the results in previous studies [35,36].
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3.2. Dyeing of Surface-Modified PTFE Plates

Dyeing tests were performed using MB and AR52 solutions as the representative
basic and acidic dyes, respectively. Dye staining of the untreated and modified PTFE
samples was performed using MB solutions (Figure 8). No staining was observed in the
untreated samples using the MB solutions, but the Au-W-P samples were stained with MB
solutions. An increasingly deeper color was achieved by surface fluorination, as shown for
the Au-W-13F-P and Au-W-101F-P samples.
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The exhaustion of the MB dye after surface staining of the PTFE samples was evaluated
by XPS analysis (Figure 9). The chemical formula of MB is C16H18ClN3S, and the N and S
contents of the adsorbed MB were determined from the N 1s and S 2p3/2 XPS spectra. In
the untreated samples, N 1s and S 2p3/2 peaks were not detected. However, both N 1s and
S 2p3/2 peaks were observed for the Au-W-P samples. Moreover, the intensities of the N 1s
and S 2p3/2 peaks of the fluorinated samples were much higher than those of the Au-W-P
samples. The intensities of N 1s and S 2p3/2 peaks increased with increasing F2 pressure
in fluorinated samples. The intensities of the N 1s and S 2p3/2 peaks were proportional to
the visibly observed degree of deep coloring (Figure 8). The dyeability of the fluorinated
samples was attributed to their higher roughness and higher electronegativity (Figure 7).
MB, being a salt with a cationic component, underwent an easy adsorption on the negative
surface of the fluorinated PTFE samples via Coulomb attraction.
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In the case of staining with the acidic AR52 dye, only slight staining of the fluorinated
PTFE samples had occurred, as shown on Figure 10c. Thus, fluorinated PTFE can be
effectively stained using basic dyes (Figure 10b), but not using acidic dyes (Figure 10c).
This may be attributed to the physical adsorption via Coulomb attraction between the
positively charged dyes and negatively charged PTFE surface. The negative charge on
the PTFE surface may be induced by the polar groups (i.e., –C=O and –C–Fx) created by
surface fluorination, as indicated by the XPS results (Figure 5). In the case of aqua regia
washing without gold sputtering, no staining of the PTFE samples (W-P) had occurred
(Figure 10a). This indicates that defluorination using gold sputtering is important for the
surface activation of PTFE plates. Surface fluorination can create a dyeable negative surface
on the PTFE plates. This dyeable hydrophilic surface on the modified PTFE can be kept
after a few washings with water.
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Figure 10. Photographs of dye staining of various PTFE samples with (a,b) methylene blue and
(c) AR52 solutions.

To confirm the chemical resistance of modified surface, the Au-W-13F-P samples
were wholly immersed in HCl solution (1 mol/L) and KOH solution (2 mol/L) as the
representative strong acidic (pH 1.0) and alkaline solutions (pH 13), respectively, for 10 min.
Dye staining of surface treated Au-W-13F-P samples was performed using MB solutions,
as indicated in Figure 11. The good wettability of Au-W-13F-P samples can be kept and
slightly improved after treatment with (b) acidic solution and (c) alkaline solution, as
shown in the results of water contact angles. Comparing with (a) untreated sample, the
dyeability of (b) acid treated samples and (c) alkali treated samples was almost the same. It
means that the high chemical resistance of modified PTFE surface can be still kept even
after treatment with strong acidic and alkaline solutions. Thus, the dyeable hydrophilic
surface on the modified PTFE may considerably expand the range of applications of PTFE
as membrane filters.
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4. Conclusions

Hydrophobic PTFE plates were successfully modified via step-by-step gold sputtering
and surface fluorination. All the modified PTFE plates showed improved hydrophilicity
compared to the untreated PTFE. After gold sputtering and washing with an aqua regia
solution, the surface roughness increased, and the wettability improved. This led to
defluorination and subsequent cross-linking on the PTFE surface, as indicated by the XPS
results. Surface fluorination may drastically increase the roughness and hydrophilicity of
PTFE, as shown by the AFM results and water contact angle tests. XPS and FTIR results
indicated the formation of polar (–C=O and –C–Fx) and hydroxyl groups on the surface
of PTFE. The fluorinated PTFE surface exhibited superior dye staining with the basic MB
dye, but not with the acidic AR52 dye. This indicated that fluorinated PTFE surfaces may
be effectively stained using basic dyes, but not using acidic dyes. The chemical resistance
of modified PTFE surface can be highly kept even after treatment with strong acidic and
alkaline solutions. Consequently, the surface dyability of PTFE was enhanced by the
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combination of gold sputtering and surface fluorination, which is owed to the increased
surface roughness and induced negatively charged hydrophilic surface.
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