Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = dual-motor precision transmission mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7090 KB  
Article
The Structural Design and Optimization of a Novel Independently Driven Bionic Ornithopter
by Mouhui Dai, Ruien Wu, Mingxuan Ye, Kai Gao, Bin Chen, Xinwang Tao and Zhijie Fan
Biomimetics 2025, 10(6), 401; https://doi.org/10.3390/biomimetics10060401 - 13 Jun 2025
Cited by 1 | Viewed by 509
Abstract
To address the limitations of traditional single-motor bionic ornithopters in terms of environmental adaptability and lift capacity, this study proposes a dual-motor independently driven system utilizing a cross-shaft single-gear crank mechanism to achieve adjustable flap speed and wing frequency, thereby enabling asymmetric flapping [...] Read more.
To address the limitations of traditional single-motor bionic ornithopters in terms of environmental adaptability and lift capacity, this study proposes a dual-motor independently driven system utilizing a cross-shaft single-gear crank mechanism to achieve adjustable flap speed and wing frequency, thereby enabling asymmetric flapping for enhanced environmental adaptability. The design integrates a two-stage reduction gear group to optimize torque transmission and an S1223 high-lift airfoil to improve aerodynamic efficiency. Multiphysics simulations combining computational fluid dynamics (CFD) and finite element analysis (FEA) demonstrate that, under flapping frequencies of 1–3.45 Hz and wind speeds of 1.2–3 m/s, the optimized model achieves 50% and 60% improvements in lift and thrust coefficients, respectively, compared to the baseline. Concurrently, peak stress in critical components (e.g., cam disks and wing rods) is reduced by 37% to 41 MPa, with significantly improved stress uniformity. These results validate the dual-motor system’s capability to dynamically adapt to turbulent airflow through the precise control of wing kinematics, offering innovative solutions for applications such as aerial inspection and precision agriculture. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

36 pages, 11422 KB  
Article
Analysis and Experiment of Thermal Field Distribution and Thermal Deformation of Nut Rotary Ball Screw Transmission Mechanism
by Hanwen Yu, Xuecheng Luan, Guiyuan Zheng, Guangchao Hao, Yan Liu, Hongyu Xing, Yandong Liu, Xiaokui Fu and Zhi Liu
Appl. Sci. 2024, 14(13), 5790; https://doi.org/10.3390/app14135790 - 2 Jul 2024
Cited by 2 | Viewed by 1618
Abstract
This study designs a differential dual-drive micro-feed mechanism, superposing the two “macro feed motions” (“motor drive screw” and “motor drive nut”) using the same transmission of “the nut rotary ball screw pair” structure. These two motions are almost equal in terms of speed [...] Read more.
This study designs a differential dual-drive micro-feed mechanism, superposing the two “macro feed motions” (“motor drive screw” and “motor drive nut”) using the same transmission of “the nut rotary ball screw pair” structure. These two motions are almost equal in terms of speed and turning direction, thus the “micro feed” can be obtained. (1) Background: Thermal deformation is the primary factor that can restrict the high-precision micro-feed mechanism and the distribution of heat sources differs from that of the conventional screw single-drive system owing to the structure and motion features of the transmission components. (2) Discussion: This study explores the thermal field distribution and thermal deformation of the differentially driven micro-feed mechanism when two driving motors are combined at different speeds. (3) Methods: Based on the theory of heat transfer, the differential dual-drive system can be used as the research object. The thermal equilibrium equations of the micro-feed transmission system are established using the thermal resistance network method, and a thermal field distribution model is obtained. (4) Results: Combined with the mechanism of thermal deformation theory, the established thermal field model is used to predict the axial thermal deformation of the differential dual-drive ball screw. (5) Conclusions: Under the dual-drive condition, the steady-state thermal error of the nut-rotating ball screw transmission mechanism increases with the increase in nut speed and composite speed and is greater than the steady-state thermal error under the single screw drive condition. After reaching the thermal steady state, the measured thermal elongation at the end of the screw in the experiment is approximately 10.5 μm and the simulation result is 11.98 μm. The experimental measurement result demonstrates the accuracy of the theoretical analysis model for thermal error at the end of the screw. Full article
Show Figures

Figure 1

21 pages, 10349 KB  
Article
Research on the Dynamic Characteristics of a Dual Linear-Motor Differential-Drive Micro-Feed Servo System
by Hanwen Yu, Guiyuan Zheng, Yandong Liu, Jiajia Zhao, Guozhao Wei and Hongkui Jiang
Appl. Sci. 2024, 14(8), 3170; https://doi.org/10.3390/app14083170 - 10 Apr 2024
Cited by 1 | Viewed by 1444
Abstract
(1) Objectives: This article presents a dual linear-motor differential drive micro-feed servo system, mainly through the optimization design of the transmission mechanism. Owing to the differential synthesis of the micro feed from the upper and under linear motors, the impact of friction nonlinearity [...] Read more.
(1) Objectives: This article presents a dual linear-motor differential drive micro-feed servo system, mainly through the optimization design of the transmission mechanism. Owing to the differential synthesis of the micro feed from the upper and under linear motors, the impact of friction nonlinearity during the ultra-low velocity micro feed is avoided, endowing the system with a lower stable feed speed to achieve precise micro-feed control. (2) Methods: Transmission components of the dual linear-motor differential-drive system are analyzed using the lumped parameter method, and a dynamic model of electromechanical coupling is created, which takes into account nonlinear friction. The motion relationship of the dual linear-motor differential-drive servo feed system is characterized using a transfer function block diagram. (3) Discussions: Through simulation, the differences in response between the linear-motor single-drive system and the dual linear-motor differential-drive system are examined under fixed or variable feeding velocities as well as the impact of varying velocity combinations of dual linear motors on the output speed of the differential drive system. (4) Results: Nonlinear friction factors exert an impact on the feed velocity of both linear-motor single-drive and dual linear-motor differential-drive systems during low-velocity micro feed. However, regardless of the constant or variable speed conditions, the dual linear-motor differential-drive servo system significantly outperforms the linear-motor single-drive system regarding low-velocity micro feed. Our simulation results are basically consistent with engineering practice, thus validating the rationality of the created system models, which paves the ground for the micro-feed control algorithms. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

17 pages, 17174 KB  
Article
An Elaborate Dynamic Model of the Dual-Motor Precision Transmission Mechanism for Performance Optimization
by Jieji Zheng, Xin Xie, Ruoyu Tan, Lingyu Chen, Baoyu Li and Dapeng Fan
Machines 2022, 10(12), 1181; https://doi.org/10.3390/machines10121181 - 7 Dec 2022
Cited by 1 | Viewed by 1987
Abstract
The dual-motor precision transmission mechanism (DMPTM) is an alternative way to eliminate backlash while ensuring the stiffness of the servo system. However, most of the established models of DMPTM are not accurate enough, and are not conducive to the optimization of system performance [...] Read more.
The dual-motor precision transmission mechanism (DMPTM) is an alternative way to eliminate backlash while ensuring the stiffness of the servo system. However, most of the established models of DMPTM are not accurate enough, and are not conducive to the optimization of system performance and the design of high-precision controllers. In this paper, based on the detailed linear model of the single components of the DMPTM, the dead-zone model, considering the time-varying stiffness, is proposed to describe the backlash of the two transmission chains, and the friction of the mechanism is depicted by the Stribeck model. Then, a high-precision dynamic model of the DMPTM is formed. Finally, the model validation experiments for the open-loop and closed-loop are carried out in the time domain and frequency domain. The experimental results show that the proposed model can accurately describe the nonlinear characteristics of the mechanism. The Pearson correlation coefficient between the proposed model and the actual system is ropen-loop > 99.41%, for the open-loop, and rclosed-loop > 83.7%, for the closed-loop, and these results are both better than those of the existing model. In the frequency domain, whether it is the open-loop or closed-loop model, the frequency response of the proposed model also reproduces the actual system well, which verifies the accuracy of the model. Full article
(This article belongs to the Special Issue Dynamic Analysis of Multibody Mechanical Systems)
Show Figures

Figure 1

Back to TopTop