Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = dropout deep belief network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2289 KB  
Article
Novel Ransomware Detection Exploiting Uncertainty and Calibration Quality Measures Using Deep Learning
by Mazen Gazzan and Frederick T. Sheldon
Information 2024, 15(5), 262; https://doi.org/10.3390/info15050262 - 5 May 2024
Cited by 8 | Viewed by 3374
Abstract
Ransomware poses a significant threat by encrypting files or systems demanding a ransom be paid. Early detection is essential to mitigate its impact. This paper presents an Uncertainty-Aware Dynamic Early Stopping (UA-DES) technique for optimizing Deep Belief Networks (DBNs) in ransomware detection. UA-DES [...] Read more.
Ransomware poses a significant threat by encrypting files or systems demanding a ransom be paid. Early detection is essential to mitigate its impact. This paper presents an Uncertainty-Aware Dynamic Early Stopping (UA-DES) technique for optimizing Deep Belief Networks (DBNs) in ransomware detection. UA-DES leverages Bayesian methods, dropout techniques, and an active learning framework to dynamically adjust the number of epochs during the training of the detection model, preventing overfitting while enhancing model accuracy and reliability. Our solution takes a set of Application Programming Interfaces (APIs), representing ransomware behavior as input we call “UA-DES-DBN”. The method incorporates uncertainty and calibration quality measures, optimizing the training process for better more accurate ransomware detection. Experiments demonstrate the effectiveness of UA-DES-DBN compared to more conventional models. The proposed model improved accuracy from 94% to 98% across various input sizes, surpassing other models. UA-DES-DBN also decreased the false positive rate from 0.18 to 0.10, making it more useful in real-world cybersecurity applications. Full article
Show Figures

Figure 1

31 pages, 13108 KB  
Article
Speech Emotion Recognition Using Convolutional Neural Networks with Attention Mechanism
by Konstantinos Mountzouris, Isidoros Perikos and Ioannis Hatzilygeroudis
Electronics 2023, 12(20), 4376; https://doi.org/10.3390/electronics12204376 - 23 Oct 2023
Cited by 16 | Viewed by 7212
Abstract
Speech emotion recognition (SER) is an interesting and difficult problem to handle. In this paper, we deal with it through the implementation of deep learning networks. We have designed and implemented six different deep learning networks, a deep belief network (DBN), a simple [...] Read more.
Speech emotion recognition (SER) is an interesting and difficult problem to handle. In this paper, we deal with it through the implementation of deep learning networks. We have designed and implemented six different deep learning networks, a deep belief network (DBN), a simple deep neural network (SDNN), an LSTM network (LSTM), an LSTM network with the addition of an attention mechanism (LSTM-ATN), a convolutional neural network (CNN), and a convolutional neural network with the addition of an attention mechanism (CNN-ATN), having in mind, apart from solving the SER problem, to test the impact of the attention mechanism on the results. Dropout and batch normalization techniques are also used to improve the generalization ability (prevention of overfitting) of the models as well as to speed up the training process. The Surrey Audio–Visual Expressed Emotion (SAVEE) database and the Ryerson Audio–Visual Database (RAVDESS) were used for the training and evaluation of our models. The results showed that the networks with the addition of the attention mechanism did better than the others. Furthermore, they showed that the CNN-ATN was the best among the tested networks, achieving an accuracy of 74% for the SAVEE database and 77% for the RAVDESS, and exceeding existing state-of-the-art systems for the same datasets. Full article
(This article belongs to the Special Issue Feature Papers in Computer Science & Engineering)
Show Figures

Figure 1

13 pages, 39688 KB  
Communication
Dropout Deep Belief Network Based Chinese Ancient Ceramic Non-Destructive Identification
by Jizhong Huang and Yepeng Guan
Sensors 2021, 21(4), 1318; https://doi.org/10.3390/s21041318 - 12 Feb 2021
Cited by 4 | Viewed by 2349
Abstract
A non-destructive identification method was developed here based on dropout deep belief network in multi-spectral data of ancient ceramic. A fractional differential algorithm was proposed to enhance the spectral details by making use of the difference between the first and second-order differential pre-process [...] Read more.
A non-destructive identification method was developed here based on dropout deep belief network in multi-spectral data of ancient ceramic. A fractional differential algorithm was proposed to enhance the spectral details by making use of the difference between the first and second-order differential pre-process spectral data. An unsupervised multi-layer restricted Boltzmann machine (RBM) was employed to extract some high-level features during pre-training. Some weight and bias values trained by RBM were used to initialize a back propagation (BP) neural network. The RBM deep belief network was fine-tuned by the BP neural network to promote the initiative performance of network training, which helped to overcome local optimal limitation of the network due to the random initializing weight parameter. The dropout strategy has been put forward into the RBM network to solve the over-fitting of small sample spectral data. The experimental results show that the proposed method has excellent recognition performance of the ceramics by comparisons with some other ones. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 1389 KB  
Article
Diagnosis of Breast Hyperplasia and Evaluation of RuXian-I Based on Metabolomics Deep Belief Networks
by Mingyang Jiang, Yanchun Liang, Zhili Pei, Xiye Wang, Fengfeng Zhou, Chengxi Wei and Xiaoyue Feng
Int. J. Mol. Sci. 2019, 20(11), 2620; https://doi.org/10.3390/ijms20112620 - 28 May 2019
Cited by 12 | Viewed by 3122
Abstract
Breast cancer is estimated to be the leading cancer type among new cases in American women. Core biopsy data have shown a close association between breast hyperplasia and breast cancer. The early diagnosis and treatment of breast hyperplasia are extremely important to prevent [...] Read more.
Breast cancer is estimated to be the leading cancer type among new cases in American women. Core biopsy data have shown a close association between breast hyperplasia and breast cancer. The early diagnosis and treatment of breast hyperplasia are extremely important to prevent breast cancer. The Mongolian medicine RuXian-I is a traditional drug that has achieved a high level of efficacy and a low incidence of side effects in its clinical use. However, for detecting the efficacy of RuXian-I, a rapid and accurate evaluation method based on metabolomic data is still lacking. Therefore, we proposed a framework, named the metabolomics deep belief network (MDBN), to analyze breast hyperplasia metabolomic data. We obtained 168 samples of metabolomic data from an animal model experiment of RuXian-I, which were averaged from control groups, treatment groups, and model groups. In the process of training, unlabelled data were used to pretrain the Deep Belief Networks models, and then labelled data were used to complete fine-tuning based on a limited-memory Broyden Fletcher Goldfarb Shanno (L-BFGS) algorithm. To prevent overfitting, a dropout method was added to the pretraining and fine-tuning procedures. The experimental results showed that the proposed model is superior to other classical classification methods that are based on positive and negative spectra data. Further, the proposed model can be used as an extension of the classification method for metabolomic data. For the high accuracy of classification of the three groups, the model indicates obvious differences and boundaries between the three groups. It can be inferred that the animal model of RuXian-I is well established, which can lay a foundation for subsequent related experiments. This also shows that metabolomic data can be used as a means to verify the effectiveness of RuXian-I in the treatment of breast hyperplasia. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 3398 KB  
Article
A Dynamic Adam Based Deep Neural Network for Fault Diagnosis of Oil-Immersed Power Transformers
by Minghui Ou, Hua Wei, Yiyi Zhang and Jiancheng Tan
Energies 2019, 12(6), 995; https://doi.org/10.3390/en12060995 - 14 Mar 2019
Cited by 26 | Viewed by 3676
Abstract
This paper presents a Dynamic Adam and dropout based deep neural network (DADDNN) for fault diagnosis of oil-immersed power transformers. To solve the problem of incomplete extraction of hidden information with data driven, the gradient first-order moment estimate and second-order moment estimate are [...] Read more.
This paper presents a Dynamic Adam and dropout based deep neural network (DADDNN) for fault diagnosis of oil-immersed power transformers. To solve the problem of incomplete extraction of hidden information with data driven, the gradient first-order moment estimate and second-order moment estimate are used to calculate the different learning rates for all parameters with stable gradient scaling. Meanwhile, the learning rate is dynamically attenuated according to the optimal interval. To prevent over-fitted, we exploit dropout technique to randomly reset some neurons and strengthen the information exchange between indirectly-linked neurons. Our proposed approach was utilized on four datasets to learn the faults diagnosis of oil-immersed power transformers. Besides, four benchmark cases in other fields were also utilized to illustrate its scalability. The simulation results show that the average diagnosis accuracies on the four datasets of our proposed method were 37.9%, 25.5%, 14.6%, 18.9%, and 11.2%, higher than international electro technical commission (IEC), Duval Triangle, stacked autoencoders (SAE), deep belief networks (DBN), and grid search support vector machines (GSSVM), respectively. Full article
Show Figures

Figure 1

Back to TopTop