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Abstract: This paper presents a Dynamic Adam and dropout based deep neural network (DADDNN)
for fault diagnosis of oil-immersed power transformers. To solve the problem of incomplete extraction
of hidden information with data driven, the gradient first-order moment estimate and second-order
moment estimate are used to calculate the different learning rates for all parameters with stable
gradient scaling. Meanwhile, the learning rate is dynamically attenuated according to the optimal
interval. To prevent over-fitted, we exploit dropout technique to randomly reset some neurons and
strengthen the information exchange between indirectly-linked neurons. Our proposed approach was
utilized on four datasets to learn the faults diagnosis of oil-immersed power transformers. Besides,
four benchmark cases in other fields were also utilized to illustrate its scalability. The simulation
results show that the average diagnosis accuracies on the four datasets of our proposed method were
37.9%, 25.5%, 14.6%, 18.9%, and 11.2%, higher than international electro technical commission (IEC),
Duval Triangle, stacked autoencoders (SAE), deep belief networks (DBN), and grid search support
vector machines (GSSVM), respectively.

Keywords: power transformer; fault diagnosis; dissolved gas analysis; deep neural network;
Dynamic Adam; dropout

1. Introduction

Power transformers are important equipment in power systems; their operational conditions
directly affect the security and stability of the power grid. A fault on a power transformer will result in
power outage at the associated region, which may cascade to the power grid leading to a widespread
blackout, causing great social and economic losses [1,2]. Therefore, it is necessary to investigate fault
diagnosis technologies for power transformers.

For the oil-immersed transformer, it is rare to conduct hood adjustment and overhaul involving
disassembly, which means that it is very difficult for us to directly examine the internal insulation,
especially the winding oil-immersed insulation. Thus, we can only assess the insulation state by
some indirect ways. Generally, various preventive tests including insulation dielectric spectrum
analysis [3–6], partial discharge method [7,8], and dissolved gas analysis (DGA) can accurately
reflect the performance and state of all aspects and parts of the power transformer to a certain
extent. In these testing items, the dissolved gas analysis is an important approach of transformer
internal fault diagnosis. It is very effective to find latent faults in transformers as well as their
development trends [9–11]. Many technicians have used the DGA technique to determine the
quantitative relationship between the content of these characteristic gases and the internal faults
of power transformers. Some improved DGA-based means have been investigated, including IEC
ratio [12], Rogers ratio [13], Duval Triangle [14,15], and Dornenburg ratio [16], which are the more
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commonly used fault diagnosis methods. However, these traditional methods have limitations.
They may not be able to provide an interpretation to every possible combination of various ratios
and may have excessively absolute coding boundary. Due to the objective uncertainty of transformer
fault itself and the boundaries of the subjective judgment, it is difficult to meet the requirements of
engineering application with the above ratio methods.

Since the transformer faults are complex and concealed, simple and crude methods have difficulty
performing effective diagnosis. It is essential to explore the principles, methods and means from
various disciplines that are helpful in the fault diagnosis of transformers. With the rapid development
of computer science and the rise of machine learning, multiple intelligent approaches such as artificial
neural network [17–19], support vector machine (SVM) [20–22], fuzzy theory [23–25], extreme learning
machine [26], and Bayesian network [27] have been applied in practice. A smart fault diagnostic
approach based on integrating five interpretation methods using neural networks is proposed
in [28]. Ma et al. [29] presented an intelligent framework for transformer condition monitoring
and assessment. Within their framework, different intelligent algorithms can be effectively deployed.
Peimankar et al. [30] first used multi-objective particle swarm optimization (PSO) algorithm to select
the best subset of features corresponding to each fault class of power transformers. Then, they used
ensemble learning systems to classify actual faults of transformers. Sherif et al. [31] utilized the
thermodynamic theory to evaluate the severity based on the energy associated with each transformer
fault type. These intelligent methods remedy the disadvantages of the mentioned traditional DGA
methods. Although back propagation neural network (BPNN) [32] has highly nonlinear fitting and
self-adaptive ability, its convergence is slow and it can easily be trapped in the local optimum. SVM is
effective in fault diagnosis with good generalization ability on small datasets. However, it does not
perform well on multi-classification problems and it is difficult to select the appropriate parameters.
Bayesian network is simple. However, it is not easy to calculate the prior probability. These shallow
learning methods are problematic when used to solve complex multi-category problems. Transformer
fault patterns are diverse with different fault causes, levels, locations, etc. Thus, more advanced
diagnosis techniques for power transformer faults are demanded.

To overcome the shortcomings of shallow learning algorithms, deep neural network (DNN) [33,34]
is proposed to effectively realize, mimic or approximate any complex function, achieving autonomous
parameters initialization and individual training for each layer. Examples include current transformer
(CT) saturation classification using unsupervised learning [35], transformer fault diagnosis using deep
belief network with non-code ratio [36], and vibration signals over cloud environment [37]. Although
these DNN based methods are progressive and useful for complex multi-category judgment problems
in CT saturation classification and fault diagnosis, they fail to build an efficient model with dynamical
and adaptive learning rates for different parameters.

Stochastic gradient-based optimization is the core of a DNN model and learning rate is a key
factor in optimization algorithms [38–40]. This paper proposes a dynamic adaptive moment estimation
optimization algorithm based DNN to dynamically change the learning rates. Firstly, we use the
gradient first and second orders of moment estimate to calculate the adaptive learning rate for each
parameter [41,42]. Secondly, we calculate the optimal interval and adopt the reciprocal attenuation
method to dynamically adjust the learning rate of each parameter along with the training process.
In addition, to prevent over-fitting, multiple reset layers are added to the DNN, which will set some of
neurons signals to zero, which strengthens the links between neurons.

The rest of the paper is organized as follows: Section 2 presents the theoretical basis and framework
of the deep neural network based on Dynamic Adam and dropout (DADDNN). The process of
constructing the DADDNN for transformer fault diagnosis and the related experimental results are
given in Section 3. Validation of model generalization performance is demonstrated in Section 4, where
discussions along with performance comparison with IEC, Duval Triangle, SAE, DBN, and GSSVM
methods are given. Conclusions are drawn in Section 5.
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2. Feasibility Analysis of the DADDNN

2.1. Dynamic Adam Optimization Algorithm

We present the Dynamic Adam optimization algorithm for gradient-based optimization of
stochastic objective functions, which aims at machine learning problems with large datasets or
high-dimensional parameter spaces [41]. Compared with the constant learning rate in Adam,
the Dynamic Adam has a variable learning rate during iterations. As the number of iterations
increases, the learning rate decreases reciprocally in the optimal interval according to Equation (6).
Dynamic Adam combines the advantages of dynamic planning [43] and two popular optimization
algorithms of adaptive gradient (AdaGrad) [44] and root mean square prop (RMSProp) [45], which
has the following advantages:

1. It is appropriate for non-stationary objectives and problems.
2. Parameter updates are independent of the gradient. The upper limit of step size is determined by

the hyper-parameters, ensuring that the updated step size is within the stable range.
3. It is gradient diagonal scaling invariant and handles noisy samples or sparse gradients better.
4. The parameters are generalized and only a small amount of adjustments are needed for

different datasets.

Specific Implementation of Dynamic Adam

The algorithm and the properties of its update rule are described as follows [41]:
Get gradients with respect to stochastic objective at iteration t.

gt “ 5θ ft pθt´1 q (1)

Update biased first moment estimate.

mt “ β1 ¨mt´1 ` p1´ β1q ¨ gt (2)

Update biased second moment estimate.

vt “ β2 ¨ vt´1 ` p1´ β2q ¨ g2
t (3)

Compute bias-corrected first moment estimate.

m̂t “
mt

`

1´ βt
1 q

(4)

Compute bias-corrected second moment estimate.

v̂t “
vt

`

1´ βt
2 q

(5)

Adjust the learning rate dynamically.

ηt “
η0

1` λ ¨ pt´ 1q
(6)

Update parameters.

θt “ θt´1 ´ ηt ¨
m̂t

?
v̂t ` ε

“ θt´1 ´ ηt ¨

b

1´ βt
2{p1´ βt

1q ¨
mt

?
vt ` ε̂

(7)
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where:

t: Iteration t
f pθq: Stochastic objective function with parameters θ

η0: Initial learning rate
λ: Attenuation coefficient of learning rate
ε: A constant for numerical stability
β1, β2 P r0, 1q: Exponential decay rates for the moment estimates
mt: First moment estimation at iteration t
vt: Second moment estimation at iteration t
m̂t: Bias-corrected first moment estimate at iteration t
v̂t: Bias-corrected second moment estimate at iteration t
g2

t : The element-wise square gt ˚ gt

The initial value of first and second moment estimates (mt, vt) are set to zero. These moment
estimates are updated using the Dynamic Adam, where hyper-parameters β1, β2 P r0, 1q control the
exponential decay rates. It is biased towards zero during the initial iterations when the decay rates
are small. To increase the absolute value of the moment estimates and eliminate the initial deviation,
bias-corrected Equations (4) and (5) are utilized.

2.2. Dropout Technique

Dropout is a novel technique that provides an efficient way of approximately combining
exponentially different neural network architectures. During training, it randomly sets neurons
to zero, deleting the connections between their incoming and outgoing neurons. The neurons to be
dropout are subject to Bernoulli distribution, i.e., each neuron is maintained with a fixed probability p
independent of other neurons [46].

Dropout technique reduces the complex co-adaptability between neurons and increases the
robustness in the absence of individual connection information. When a neuron cannot rely on other
specific neurons, it has to learn to be robust via useful links. This ensures the established DNN is
strong and not over-fitted. A neural network with and without dropout are shown in Figure 1.

(a) (b)
Figure 1. Dropout neural network model: (a) standard neural network; and (b) neural network
with dropout.
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3. Realization and Discussions of Transformer Fault Diagnosis Based on DADDNN Model

3.1. Transformer Fault Type and Data Acquisition

The DGA data used in this paper are as follows: Dataset 1 comes from China Southern Power
Grid Company and consists of 135 samples, which are related to power transformers used at voltages
between 35 kV and 500 kV. Dataset 2 contains 118 samples from IEC TC 10 database [12]. Dataset 3
contains 533 samples from published papers [47] on dissolved gases with corresponding fault types.
Combining datasets collected from different sources to a whole dataset can enhance the generalization
ability of the DADDNN. Therefore, we put Datasets 1–3 together into the Total dataset.

Considering the influence of a transformer’s capacity, model, environment and other factors,
we classified the transformer fault types into seven categories [16,48]: Partial discharge (PD),
low-energy discharge (LD), high-energy discharge (HD), Thermal fault of low temperature (t < 300 ˝C),
thermal fault of medium temperature (t ě 300 ˝C and t ď 700 ˝C), thermal fault of medium-low
temperature (MLT), and thermal fault of high temperature (HT) (t > 700 ˝C). In addition, it was also
crucial to record the samples under normal condition (NC). This helped us determine whether the
transformer was in a fault state. Thus, the normal condition was also added to the recognition classes.
The sample distributions of different datasets are shown in Table 1.

Table 1. Samples distribution of different datasets.

Category Samples Dataset 1 Dataset 2 Dataset 3 Total Dataset

PD 11 0 20 31
LD 13 23 68 104
HD 32 45 128 205
LT 7 0 17 24
MT 22 0 47 69

MLT 0 10 44 54
HT 50 14 157 221
NC 0 26 52 78

Total 135 118 533 786

There were 786 records in total, each containing dissolved gases (H2, CH4, C2H6, C2H4, and C2H2),
as well the incipient faults of the corresponding transformers.

3.2. Selection of the Feature Vector

DNN has powerful sensing ability. It can directly extract high-level features from the original
data. This method straightly uses the dissolved gases (H2, CH4, C2H6, C2H4, C2H2) as feature vectors.

To eliminate the calculation error and maintain the original characteristics of the samples,
the original data were normalized as follows:

xnor “
x´ xmean

xstd
(8)

where x denotes the primary gas concentration, xnor indicates the normalized value, and xmean and xstd
represent the average value and standard deviation of this kind of gas, respectively. The normalized
vector is used as the DADDNN input.

3.3. Transformer Fault Diagnosis Instantiation Model

The DADDNN framework was constructed, as shown in Figure 2. The input vector
n “ rn1, n2, n3, n4, n5s represents the normalized value of the gas (H2, CH4, C2H6, C2H4, C2H2)
concentrations. The output vector is y “ ry1, y2, ..., yk, yk`1s, each of which is within (0, 1) range.
The maximum value determines the attribution category. fi, wi, and bi indicate the activation function,
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weight, and bias of the ith layer (the input layer is marked as layer 0), respectively. As for the model
parameters, the weights were initialized with the method of Glorot uniform distribution, the biases
were initialized to 0, the batch training size was set to 30, and the probability of a neuron reset to zero
was determined to be 50% [46,49]. To improve the performance, we adopted the parallel and deep
network structure and used rectified linear units (Relu) as activation function. Meanwhile, Dynamic
Adam was utilized for optimization algorithm.
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Figure 2. The instantiation model of DADDNN.

3.3.1. Learning Rate

Learning rate is one of the most important hyper-parameters in deep learning. It is positive
expectation that learning rates can change from big to small in the optimal interval. This can increase
the convergence performance. Therefore, we further determined the initial learning rate η0 and
attenuation coefficient λ of Dynamic Adam by finding the optimal range.

When the learning rate enters the optimal range, the training loss (network loss in training) will
drop steeply and maintain a downward trend. We gradually increased the learning rate at every
iteration and observed the rise and fall of the training loss to determine the optimal interval.

1 pepochq “
training samples

batch size
piterationsq . (9)

The dynamic learning rate presents the non-linear growth according to Equation (10) and is
shown in Figure 3.

η “ ηmin ` pηmax ´ ηminq ¨
iterations

total iterations
(10)

where η denotes the dynamic learning rate, and ηmax and ηmin indicate the maximum and minimum
learning rates, which are set to 1 ˆ 10´2 and 1 ˆ 10´5, respectively.

In the process of finding the optimal learning rate interval, Figure 4 shows the relationship
between training epoch and training loss. The relationship between training iteration and training loss
is shown in Figure 5.

By observing Figure 4, we preliminarily determined that the training loss fell rapidly during the
training epochs [0, 200]. It can be clearly seen in Figure 5 that the training loss started to descend
sharply from the 100th iteration. Through conversion, taking the 100th iteration and the 4140th
iteration as nodes, we could precisely calculate the optimal interval of the learning rate, as shown
in Figure 6.
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Figure 3. Learning rate curve.

Figure 4. Relationship between network loss and training epoch.

Figure 5. Relationship between network loss and training iteration.
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Figure 6. Relationship between network loss and learning rate.

3.3.2. Paratactic Network Structure

To construct the transformer fault diagnosis model, a paratactic network structure with 5 input
layers, 5 hidden layers, and 500 neurons was utilized. Fat and short structure was used for
comparison. Then, the number combination of neurons per hidden layer with paratactic structure was
(100,100,100,100,100). Similarly, the other structure was (50,400,50). The convergence results are shown
in Figure 7.

Figure 7. Performance comparison of different network structures.

As shown in Figure 7, the convergence speeds were quite similar at the beginning. However,
the performance difference was exhibited just after 16 learning epochs and the training error of the fat
and short structure was higher than 5% at the end. The models with deep and paratactic structure had
better performance as the training error was further reduced to 3%.
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3.3.3. Activation Function “Relu”

In a DNN model, the commonly used activation functions are as follows:

Sigmoid : f pxq “
1

1` expp´xq
(11)

So f tplus : f pxq “ logpexppxq ` 1q (12)

Relu : f pxq “ maxp0, xq (13)

We adopted the Relu function to activate the DADDNN with the characteristic. The output was
set to zero when the input value was less than zero; otherwise, the output was equal to the input.
Meanwhile, Sigmoid and Softplus functions were also used for training. The convergence results are
shown in Figure 8.

Figure 8. Performance comparison of different activation functions.

It is obviously seen in Figure 8 that Relu achieved a remarkable increment of convergence
performance over Softplus in convergence speed and precision. Compared to Sigmoid, Relu relieved
the phenomenon of sharp gradient and gradient disappearance.

3.3.4. Optimization Algorithm “Dynamic Adam”

As for optimization algorithm, we utilized the proposed Dynamic Adam whose exponential
decay rates β1 and β2 for the moment estimates were set to 0.9 and 0.999. The η0 was initialized to
4.006ˆ10´3. To improve the stability, λ and the constant for numerical stability ε were set to 10´3 and
10´8, respectively [41]. At the same time, SGD, SGD+Momentum and Adam optimization algorithms
were also applied to Dataset 2 for comparison.

As shown in Figure 9, the training loss based on Dynamic Adam lowered rapidly in the initial
stage and kept convergence smooth after 300 epochs. In addition, Dynamic Adam outperformed
SGD with Momentum by a large margin in the whole stage. One important reason was that it
adopted different learning rates for different parameters instead of fix picking manually as in SGD.
Compared to the Adam, Dynamic Adam had better convergence properties since learning rates could
change dynamically.
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The classification accuracies for the four optimization algorithms are shown in Figure 10a.
During the last 100 epochs, the upward trend converged to the stable point obviously. Precisely,
the average accuracies were: 55.0% for SGD, 70.8% for SGD+Momentum, 86.8% for Adam, and 93.1%
for Dynamic Adam. The area under the receiver operating characteristic curve (Auc@Roc) of Dynamic
Adam achieved 97.5%, indicating its progressiveness.

(a) (b)
Figure 9. Training loss of different optimization algorithms: (a) integral convergence comparison;
and (b) initial training loss.

(a) (b)
Figure 10. Classification results of different optimization algorithms: (a) classification accuracy of
different optimization algorithms; and (b) Auc@Roc of different optimization algorithms.

4. DADDNN Model Effect Analysis

4.1. Method Performance Comparison

To further verify the effectiveness of the proposed approach, the IEC 60599 [16], Duval Triangle,
SAE, DBN, GSSVM, and DADDNN methods were performed with our four datasets. The ratio
between training set and testing set was kept at 3:1. We introduced random noise to train a 100
hidden unit SAE and used it to initialize a feed forward neuron network (FFNN). A DBN consisted
of two 100-100 units restricted Boltzmann machines (RBMs) was trained to exploit the weight to
initialize a FFNN. Meanwhile, we chose the radial basis function and adopted cross-validation to
construct a GSSVM model. The penalty factor and the radius of kernel function were set by Grid
Search. The results are shown in Table 2.
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Table 2. Diagnosis accuracies of various methods under different datasets (%).

Dataset IEC 60599 Duval Triangle SAE DBN GSSVM DADDNN

Dataset 1 57.6 66.7 82.9 77.1 82.9 93.9
Dataset 2 48.3 65.5 71.4 67.9 82.1 92.9
Dataset 3 42.1 48.1 63.2 59.4 62.4 75.2

Total dataset 42.6 60.0 66.3 62.2 70.3 80.5
Average accuracy 47.7 60.1 71.0 66.7 74.4 85.6

In Table 2, we can see that the diagnosis accuracies of DADDNN were the highest on all four
datasets. Compared to the GSSVM model, the diagnosis accuracies of DADDNN increased by 11.0%,
10.8%, 12.8% and 10.2%, respectively. Compared to an unsupervised SAE model, the improvements
were 11.0%, 21.5%, 12.0%, and 14.2%, respectively. We also compared our method with traditional
approaches such as IEC 60599 and Duval Triangle, and the improvements of average accuracies
were 37.9% and 25.5%, respectively. In other words, the more diversified network and more flexible
optimization made the DADDNN obtain higher diagnosis accuracy.

To fully demonstrate the effectiveness of the proposed DADDNN, extensive tests were performed.
Table 3 lists the diagnosis accuracies for fault types of PD, LD, HD, LT, MT, MLT, HT, and NC in the
Total dataset, as well diagnosis methods of IEC 60599, Duval Triangle, SAE, DBN and GSSVM for
comparison. Meanwhile, the convergence process of DADDNN without and with dropout are shown
in Figures 11 and 12, respectively.

Table 3. Diagnosis accuracy of each fault category in Total dataset (%).

Category IEC 60599 Duval Triangle SAE DBN GSSVM DADDNN

PD 100.0 0.0 87.5 0.0 87.5 87.5
LD 30.8 61.5 11.5 69.2 46.2 57.7
HD 23.5 68.6 88.2 72.5 82.4 90.2
LT 16.7 50.0 16.7 16.7 16.7 50.0
MT 76.5 41.2 70.6 70.6 70.6 82.4

MLT 0.0 0.0 15.4 0.0 15.4 53.8
HT 72.7 96.4 87.3 78.2 85.5 90.9
NC 0.0 0.0 63.2 57.9 57.9 57.9

(a) (b)
Figure 11. Convergence process of DADDNN without dropout: (a) network loss; and (b)
diagnosis accuracy.
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(a) (b)
Figure 12. Convergence process of DADDNN with dropout: (a) network loss; and (b)
diagnosis accuracy.

As shown in Table 3, the NC type accuracies of IEC 60599 and Duval Triangle were 0.0% because
the normal condition judgement rules were missing for them. Therefore, these two traditional methods
could not distinguish the normal state and are not suitable for real-time fault warning. Our model
performed well, especially in the newly added MLT type compared with the other approaches.
The difference between the maximum and minimum values of these compared methods in the single
category diagnosis accuracy were 100%, 96.4%, 76.7%, 78.2%, and 72.1%, respectively. However,
DADDNN could reduce to 40.9%, which illustrates that it has stable and balanced recognition ability
for different fault categories.

As shown in Figure 11, the difference between training curve and validation cure of DADDNN
without dropout was large. Average values gap of training accuracy and validation accuracy was
20.0%, indicating that the model is over-fitted. Conversely, the convergence process of DADDNN
with dropout was normal (Figure 12), demonstrating that the dropout technique is suitable for
preventing over-fitted.

4.2. Analysis of Generalization Performance

To test the general applicability of the Dynamic Adam for other classification problems, four
benchmark cases were used, which are from university of California Irvine (UCI) database for machine
learning [50]. These datasets include the medical Breast cancer data, biologic Iris data, Wine data,
and chemical Glass identification data. The specific information of each dataset is shown in Table 4.
Meanwhile, since the optimization algorithms SGD, SGD+Momentum, and Adagrad have a wide
range of applications, the performance of the four DNN based algorithms were compared.

For the DNN model, we used the mean squared error (MSE) as the loss function, the benchmark
learning rate was set to 0.01 and the value of Momentum was set to 0.8. All input data were normalized
in [0, 1] before training. Table 5 shows the comparison results.

Table 4. Standard data sets information based UCI.

Data Set Class Attributes Instances Train Samples Test Samples

Breast cancer 2 30 569 469 100
Iris 3 4 150 120 30

Wine 3 13 178 142 36
Class identification 6 9 214 171 43
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Table 5. Analysis results of model performance with standard datasets.

Data Set Model Structure Activation
Function Algorithm Train

Accuracy (%)
Test

Accuracy (%)

Breast cancer

DNN
6 layers

600 units Tanh SGD 92.5 93.9

DNN
6 layers

600 units Tanh SGD+Momentum 93.2 93.9

DNN
6 layers

600 units Tanh Adagrad 94.9 96.0

DNN
6 layers

600 units Tanh Dynamic Adam 96.0 97.0

Iris

DNN
5 layers

500 units Relu SGD 98.3 100.0

DNN
5 layers

500 units Relu SGD+Momentum 99.2 100.0

DNN
5 layers

500 units Relu Adagrad 99.2 100.0

DNN
5 layers

500 units Relu Dynamic Adam 99.2 100.0

Wine

DNN
6 layers

600 units Tanh SGD 67.0 72.2

DNN
6 layers

600 units Tanh SGD+Momentum 69.0 88.9

DNN
6 layers

600 units Tanh Adagrad 95.1 100.0

DNN
6 layers

600 units Tanh Dynamic Adam 97.2 100.0

Glass
identification

DNN
6 layers

600 units Tanh SGD 35.7 44.2

DNN
6 layers

600 units Tanh SGD+Momentum 35.7 38.9

DNN
6 layers

600 units Tanh Adagrad 74.8 72.7

DNN
6 layers

600 units Tanh Dynamic Adam 83.6 81.4

For the datasets of Iris and Wine with lesser categories and smaller samples, both the Adagrad
and Dynamic Adam could fully extract data information and make accurate judgments, obtaining
100.0% classification accuracy in testing. Compared with the SGD and SGD+Momentum, performance
was significantly improved. For the dataset of Breast cancer with lesser categories and larger samples,
the Dynamic Adam achieved the highest 97.0% classification accuracy.For the dataset of Glass
identification with more categories and smaller samples, it was more difficult to classify. Compared
with 73.810% and 73.913% classification accuracies of other approaches [51,52], our approach had
a better performance, reaching 81.4%.

5. Conclusions

This study considered how to recognize a transformer fault with data driven. Dynamic Adam
and dropout based DNN is well-suited to the diagnosis problems. Some conclusions are as follows:

(1) By using Dynamic Adam, which aims at multi-dimensional parameter spaces, we solved
the problem of dynamically planning the learning rates for different parameters. This speeds up the
convergence.

(2) Compared with IEC, Duval Triangle, SAE, DBN and GSSVM models, the proposed approach
had significant and balanced growth in diagnosis accuracy. It could reflect the real state of transformers
more accurately.
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(3) We exploited the DADDNN model to conduct pattern recognition for other datasets of different
fields. Our method provides a practicable idea for intelligent diagnosis.

With the development of high-voltage power transmission, power transformer capacity is
increasing and the associated operation, control and protection are more intelligent. Faults on a power
transformer will have higher complexity and concurrency. Combining model driven with data driven
methods is expected to play an important role in future research.
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