Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = doxercalciferol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1859 KB  
Review
Vitamin D and Its Analogues: From Differences in Molecular Mechanisms to Potential Benefits of Adapted Use in the Treatment of Alzheimer’s Disease
by Andrea Thiel, Carina Hermanns, Anna Andrea Lauer, Jörg Reichrath, Tobias Erhardt, Tobias Hartmann, Marcus Otto Walter Grimm and Heike Sabine Grimm
Nutrients 2023, 15(7), 1684; https://doi.org/10.3390/nu15071684 - 30 Mar 2023
Cited by 18 | Viewed by 8985
Abstract
Lifestyle habits and insufficient sunlight exposure lead to a high prevalence of vitamin D hypovitaminosis, especially in the elderly. Recent studies suggest that in central Europe more than 50% of people over 60 years are not sufficiently supplied with vitamin D. Since vitamin [...] Read more.
Lifestyle habits and insufficient sunlight exposure lead to a high prevalence of vitamin D hypovitaminosis, especially in the elderly. Recent studies suggest that in central Europe more than 50% of people over 60 years are not sufficiently supplied with vitamin D. Since vitamin D hypovitaminosis is associated with many diseases, such as Alzheimer’s disease (AD), vitamin D supplementation seems to be particularly useful for this vulnerable age population. Importantly, in addition to vitamin D, several analogues are known and used for different medical purposes. These vitamin D analogues differ not only in their pharmacokinetics and binding affinity to the vitamin D receptor, but also in their potential side effects. Here, we discuss these aspects, especially those of the commonly used vitamin D analogues alfacalcidol, paricalcitol, doxercalciferol, tacalcitol, calcipotriol, and eldecalcitol. In addition to their pleiotropic effects on mechanisms relevant to AD, potential effects of vitamin D analogues on comorbidities common in the context of geriatric diseases are summarized. AD is defined as a complex neurodegenerative disease of the central nervous system and is commonly represented in the elderly population. It is usually caused by extracellular accumulation of amyloidogenic plaques, consisting of amyloid (Aβ) peptides. Furthermore, the formation of intracellular neurofibrillary tangles involving hyperphosphorylated tau proteins contributes to the pathology of AD. In conclusion, this review emphasizes the importance of an adequate vitamin D supply and discusses the specifics of administering various vitamin D analogues compared with vitamin D in geriatric patients, especially those suffering from AD. Full article
(This article belongs to the Special Issue Regulatory Role of Vitamin D and Its Derivatives in the Immune System)
Show Figures

Figure 1

15 pages, 405 KB  
Review
Vitamin D and Glomerulonephritis
by Guido Gembillo, Rossella Siligato, Michela Amatruda, Giovanni Conti and Domenico Santoro
Medicina 2021, 57(2), 186; https://doi.org/10.3390/medicina57020186 - 22 Feb 2021
Cited by 36 | Viewed by 10928
Abstract
Vitamin D presents a plethora of different functions that go beyond its role in skeletal homeostasis. It is an efficient endocrine regulator of the Renin–Angiotensin–Aldosterone System (RAAS) and erythropoiesis, exerts immunomodulatory effects, reduces the cardiovascular events and all-cause mortality. In Chronic Kidney Disease [...] Read more.
Vitamin D presents a plethora of different functions that go beyond its role in skeletal homeostasis. It is an efficient endocrine regulator of the Renin–Angiotensin–Aldosterone System (RAAS) and erythropoiesis, exerts immunomodulatory effects, reduces the cardiovascular events and all-cause mortality. In Chronic Kidney Disease (CKD) patients, Vitamin D function is impaired; the renal hydrolyzation of its inactive form by the action of 1α-hydroxylase declines at the same pace of reduced nephron mass. Moreover, Vitamin D major carrier, the D-binding protein (DBP), is less represented due to Nephrotic Syndrome (NS), proteinuria, and the alteration of the cubilin–megalin–amnionless receptor complex in the renal proximal tubule. In Glomerulonephritis (GN), Vitamin D supplementation demonstrated to significantly reduce proteinuria and to slow kidney disease progression. It also has potent antiproliferative and immunomodulating functions, contributing to the inhibitions of kidney inflammation. Vitamin D preserves the structural integrity of the slit diaphragm guaranteeing protective effects on podocytes. Activated Vitamin D has been demonstrated to potentiate the antiproteinuric effect of RAAS inhibitors in IgA nephropathy and Lupus Nephritis, enforcing its role in the treatment of glomerulonephritis: calcitriol treatment, through Vitamin D receptor (VDR) action, can regulate the heparanase promoter activity and modulate the urokinase receptor (uPAR), guaranteeing podocyte preservation. It also controls the podocyte distribution by modulating mRNA synthesis and protein expression of nephrin and podocin. Maxalcalcitol is another promising alternative: it has about 1/600 affinity to vitamin D binding protein (DBP), compared to Calcitriol, overcoming the risk of hypercalcemia, hyperphosphatemia and calcifications, and it circulates principally in unbound form with easier availability for target tissues. Doxercalciferol, as well as paricalcitol, showed a lower incidence of hypercalcemia and hypercalciuria than Calcitriol. Paricalcitol demonstrated a significant role in suppressing RAAS genes expression: it significantly decreases angiotensinogen, renin, renin receptors, and vascular endothelial growth factor (VEGF) mRNA levels, thus reducing proteinuria and renal damage. The purpose of this article is to establish the Vitamin D role on immunomodulation, inflammatory and autoimmune processes in GN. Full article
(This article belongs to the Special Issue Glomerulonephritis: Pathogenesis, Risk Factors, and Treatment)
21 pages, 2834 KB  
Article
Vitamin D and Its Analogues Decrease Amyloid-β (Aβ) Formation and Increase Aβ-Degradation
by Marcus O. W. Grimm, Andrea Thiel, Anna A. Lauer, Jakob Winkler, Johannes Lehmann, Liesa Regner, Christopher Nelke, Daniel Janitschke, Céline Benoist, Olga Streidenberger, Hannah Stötzel, Kristina Endres, Christian Herr, Christoph Beisswenger, Heike S. Grimm, Robert Bals, Frank Lammert and Tobias Hartmann
Int. J. Mol. Sci. 2017, 18(12), 2764; https://doi.org/10.3390/ijms18122764 - 19 Dec 2017
Cited by 84 | Viewed by 9198
Abstract
Alzheimer’s disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-β (Aβ), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased [...] Read more.
Alzheimer’s disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-β (Aβ), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aβ-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol) on AD-relevant mechanisms. D2 and D3 analogues decreased Aβ-production and increased Aβ-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aβ-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased β-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention. Full article
Show Figures

Graphical abstract

12 pages, 89 KB  
Review
A New Look at the Most Successful Prodrugs for Active Vitamin D (D Hormone): Alfacalcidol and Doxercalciferol
by Noboru Kubodera
Molecules 2009, 14(10), 3869-3880; https://doi.org/10.3390/molecules14103869 - 29 Sep 2009
Cited by 43 | Viewed by 19514
Abstract
Alfacalcidol (1α-hydroxyvitamin D3) has been widely used since 1981 as a prodrug for calcitriol (1α,25-dihydroxyvitamin D3) in the treatment of hypocalcemia, chronic renal failure, hypoparathyroidism and osteoporosis. More recently, doxercalciferol (1α-hydroxyvitamin D2) has been used since 1999 [...] Read more.
Alfacalcidol (1α-hydroxyvitamin D3) has been widely used since 1981 as a prodrug for calcitriol (1α,25-dihydroxyvitamin D3) in the treatment of hypocalcemia, chronic renal failure, hypoparathyroidism and osteoporosis. More recently, doxercalciferol (1α-hydroxyvitamin D2) has been used since 1999 as a prodrug for 1α,25-dihydroxyvitamin D2 for the treatment of secondary hyperparathyroidism. Currently, six forms of vitamin D are known. They range from vitamin D2 to vitamin D7 and are distinguished by their differing side chains. Only vitamin D2 and vitamin D3 have been found to be biologically active based on the elucidation of activation pathways. Alfacalcidol and osteoporosis/doxercalciferol and secondary hyperparathyroidism are discussed, with a new look at old compounds including their practical syntheses. Full article
(This article belongs to the Special Issue Prodrugs)
Show Figures

Scheme 1

Back to TopTop