Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = double-yeast mixed-culture fermentation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3947 KiB  
Article
Transcriptional Analysis of Mixed-Culture Fermentation of Lachancea thermotolerans and Saccharomyces cerevisiae for Natural Fruity Sour Beer
by Xiaofen Fu, Liyun Guo, Yumeng Li, Xinyu Chen, Yumei Song and Shizhong Li
Fermentation 2024, 10(4), 180; https://doi.org/10.3390/fermentation10040180 - 25 Mar 2024
Cited by 6 | Viewed by 2286
Abstract
Increasingly high interest in yeast–yeast interactions in mixed-culture fermentation is seen along with beer consumers’ demands driving both market growth and requests for biotechnological solutions that can provide better sensory characteristics. In this study, Lachancea thermotolerans and Saccharomyces cerevisiae with a cell population [...] Read more.
Increasingly high interest in yeast–yeast interactions in mixed-culture fermentation is seen along with beer consumers’ demands driving both market growth and requests for biotechnological solutions that can provide better sensory characteristics. In this study, Lachancea thermotolerans and Saccharomyces cerevisiae with a cell population ratio of 10:1 were inoculated for sour beer fermentation while the process conditions within the brewing industry remained unchanged. With L. thermotolerans producing lactic acid (1.5–1.8 g/L) and bringing down the pH to 3.3–3.4 whilst adding no foreign flavors herein, this study revealed a new natural, fruity sour beer with a soft, sour taste. In this study, the double-yeast mixed-culture fermentation produced more flavor substances than a single-culture process, and plenty of isobutyl acetate and isoamyl acetate enhanced the fruit aroma and balanced the sour beer with a refreshing taste. While playing a positive role in improving the beer’s quality, the double-yeast mixed-culture fermentation developed in this study helps to offer an alternative mass production solution for producing sour beer with the processes better controlled and the fermentation time reduced. The stress responses of the L. thermotolerans during the fermentation were revealed by integrating RNA sequencing (RNA-Seq) and metabolite data. Given that the metabolic flux distribution of the S. cerevisiae during the fermentation differed from that of the non-Saccharomyces yeasts, transcriptional analysis of non-Saccharomyces yeast and S. cerevisiae could be suitable in helping to develop strategies to modulate the transcriptional responses of specific genes that are associated with the aroma compounds released by S. cerevisiae and non-Saccharomyces yeasts. In the case of some non-Saccharomyces yeast species/strains, the diversion of alcoholic fermentation and the formation of a great number of secondary compounds may, in part, account for the low ethanol yield. Full article
(This article belongs to the Special Issue Advances in Beverages, Food, Yeast and Brewing Research, 3rd Edition)
Show Figures

Figure 1

23 pages, 3449 KiB  
Article
Physical Contact between Torulaspora delbrueckii and Saccharomyces cerevisiae Alters Cell Growth and Molecular Interactions in Grape Must
by Laura Chasseriaud, Warren Albertin, Mélisande Blein-Nicolas, Thierry Balliau, Michel Zivy, Joana Coulon and Marina Bely
Beverages 2023, 9(3), 81; https://doi.org/10.3390/beverages9030081 - 15 Sep 2023
Cited by 1 | Viewed by 2691
Abstract
The use of multi-starters in oenological conditions (Saccharomyces cerevisiae and non-Saccharomyces species) is becoming increasingly common. For the past ten years, the combination of Torulaspora delbrueckii and S. cerevisiae has been proposed to winemakers to improve the wine aromatic profile compared [...] Read more.
The use of multi-starters in oenological conditions (Saccharomyces cerevisiae and non-Saccharomyces species) is becoming increasingly common. For the past ten years, the combination of Torulaspora delbrueckii and S. cerevisiae has been proposed to winemakers to improve the wine aromatic profile compared to pure inoculation with Saccharomyces cerevisiae. In this work, two commercial strains, T. delbrueckii Zymaflore® Alpha and S. cerevisiae Zymaflore® X5 (Laffort compagny, Floirac, France), were investigated in Sauvignon blanc must using a fermentor with a double compartment allowing for physical separation of the two yeast species. The physical separation of the two species resulted in significant differences in the growth, fermentation kinetics (maximum fermentation rate (+13%)), fermentation duration (−14%) and the production of 3SH (+35%) in comparison to mixed cultures with contact. Proteomic analysis confirmed cell–cell contact interactions, as strong differences were observed for both species between mixed cultures with and without physical contact. T. delbrueckii mortality in mixed cultures with physical contact may be explained by an oxidative stress. Indeed two proteins implicated in the oxidative stress response were found in significantly higher amounts: a cytosolic catalase T and a cytoplasmic thioredoxin isoenzyme. For S. cerevisiae, an increase in proteins involved in the respiratory chain and proton transport were found in higher amounts in pure cultures and mixed culture without physical contact. Our results confirmed that the two mixed inoculations increased certain minor esters (ethylpropanoate, ethyl dihydrocinnamate and ethyl isobutanoate) specifically produced by T. delbrueckii, 3.4-fold more compared to in the pure S. cerevisiae culture. In conclusion, these results provide new insights into the underlying mechanisms involved in cell–cell contact and confirm the benefits of using T. delbrueckii species under winemaking conditions. Full article
Show Figures

Figure 1

15 pages, 2232 KiB  
Article
Polysaccharide Hydrogels for the Protection of Dairy-Related Microorganisms in Adverse Environmental Conditions
by Ilja Gasan Osojnik Črnivec, Tigran Neresyan, Yuliana Gatina, Vid Kolmanič Bučar, Mihaela Skrt, Iztok Dogša, Bojana Bogovič Matijašić, Irina Kulikova, Aleksei Lodygin and Nataša Poklar Ulrih
Molecules 2021, 26(24), 7484; https://doi.org/10.3390/molecules26247484 - 10 Dec 2021
Cited by 7 | Viewed by 4211
Abstract
Adverse environmental conditions are severely limiting the use of microorganisms in food systems, such as probiotic delivery, where low pH causes a rapid decrease in the survival of ingested bacteria, and mixed-culture fermentation, where stepwise changes and/or metabolites of individual microbial groups can [...] Read more.
Adverse environmental conditions are severely limiting the use of microorganisms in food systems, such as probiotic delivery, where low pH causes a rapid decrease in the survival of ingested bacteria, and mixed-culture fermentation, where stepwise changes and/or metabolites of individual microbial groups can hinder overall growth and production. In our study, model probiotic lactic acid bacteria (L. plantarum ATCC 8014, L. rhamnosus GG) and yeasts native to dairy mixed cultures (K. marxianus ZIM 1868) were entrapped in an optimized (cell, alginate and hardening solution concentration, electrostatic working parameters) Ca-alginate system. Encapsulated cultures were examined for short-term survival in the absence of nutrients (lactic acid bacteria) and long-term performance in acidified conditions (yeasts). In particular, the use of encapsulated yeasts in these conditions has not been previously examined. Electrostatic manufacturing allowed for the preparation of well-defined alginate microbeads (180–260 µm diameter), high cell-entrapment (95%) and viability (90%), and uniform distribution of the encapsulated cells throughout the hydrogel matrix. The entrapped L. plantarum maintained improved viabilities during 180 min at pH 2.0 (19% higher when compared to the free culture), whereas, L. rhamnosus appeared to be less robust. The encapsulated K. marxianus exhibited double product yields in lactose- and lactic acid-modified MRS growth media (compared to an unfavorable growth environment for freely suspended cells). Even within a conventional encapsulation system, the pH responsive features of alginate provided superior protection and production of encapsulated yeasts, allowing several applications in lacto-fermented or acidified growth environments, further options for process optimization, and novel carrier design strategies based on inhibitor charge expulsion. Full article
Show Figures

Graphical abstract

Back to TopTop