Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = double GRU-RNN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1375 KB  
Article
Instance-Level Weighted Contrast Learning for Text Classification
by Xinhui Liu, Jifa Chen and Qiubo Huang
Appl. Sci. 2025, 15(8), 4236; https://doi.org/10.3390/app15084236 - 11 Apr 2025
Cited by 2 | Viewed by 1040
Abstract
With the explosion of information, the amount of text data has increased significantly, making text categorization a central area of research in natural language processing (NLP). Traditional machine learning methods are effective, but deep learning models excel in processing semantic information. Models such [...] Read more.
With the explosion of information, the amount of text data has increased significantly, making text categorization a central area of research in natural language processing (NLP). Traditional machine learning methods are effective, but deep learning models excel in processing semantic information. Models such as CNN, RNN, LSTM, and GRU have emerged as powerful tools for text classification. Pre-trained models such as BERT and GPT have further advanced text categorization techniques. Contrastive learning has become a key research focus aimed at improving classification performance by learning the similarities and differences between samples using models. However, existing contrastive learning methods have notable shortcomings, primarily concerning insufficient data utilization. This study focuses on data enhancement techniques to expand the text data through symbol insertion, affirmative auxiliary verbs, double negation, and punctuation repetition, aiming to improve the generalization and robustness of the pre-trained model. Two data enhancement strategies, affirmative enhancement and negative transformation, are introduced to deepen the data’s meaning and increase the volume of training data. To address the introduction of false data, an instance weighting method is employed to penalize false negative samples, while complementary models generate sample weights to mitigate the impact of sampling bias. Finally, the effectiveness of the proposed method is demonstrated through several experiments. Full article
Show Figures

Figure 1

20 pages, 22656 KB  
Article
Intelligent Reflecting Surface-Assisted Wireless Communication Using RNNs: Comprehensive Insights
by Rana Tabassum, Mohammad Abrar Shakil Sejan, Md Habibur Rahman, Md Abdul Aziz and Hyoung-Kyu Song
Mathematics 2024, 12(19), 2973; https://doi.org/10.3390/math12192973 - 25 Sep 2024
Cited by 8 | Viewed by 4337
Abstract
By adjusting the propagation environment using reconfigurable reflecting elements, intelligent reflecting surfaces (IRSs) have become potential techniques used to improve the efficiency of wireless communication networks. In IRS-assisted communication systems, accurate channel estimation is crucial for optimizing signal transmission and achieving high spectral [...] Read more.
By adjusting the propagation environment using reconfigurable reflecting elements, intelligent reflecting surfaces (IRSs) have become potential techniques used to improve the efficiency of wireless communication networks. In IRS-assisted communication systems, accurate channel estimation is crucial for optimizing signal transmission and achieving high spectral efficiency. As mobile data traffic continues to surge and the demand for high-capacity and low-latency wireless connectivity grows, IRSs are becoming pivotal technologies in the development of next-generation communication networks. IRSs offer the potential to revolutionize wireless propagation environments, improving network capacity and coverage, particularly in high-frequency wave scenarios where traditional signals encounter obstacles. Amidst this evolving landscape, machine learning (ML) emerges as a powerful tool to harness the full potential of IRS-assisted communication systems, particularly given the escalating computational complexity associated with deploying and operating IRSs in dynamic environments. This paper presents an overview of preliminary results for IRS-assisted communication using recurrent neural networks (RNNs). We first implement single- and double-layer LSTM, BiLSTM, and GRU techniques for an IRS-based communication system. In the next phase, we explore a hybrid approach, combining different RNN techniques, including LSTM-BiLSTM, LSTM-GRU, and BiLSTM-GRU, as well as their reverse configurations. These RNN algorithms were evaluated with respect to bit error rate (BER) and symbol error rate (SER) for IRS-enhanced communication. According to the experimental results, the BiLSTM double-layer model and the BiLSTM-GRU combination demonstrated the highest BER and SER accuracy compared to other approaches. Full article
Show Figures

Figure 1

15 pages, 5646 KB  
Article
Evaluation of Machine Learning Models in Air Pollution Prediction for a Case Study of Macau as an Effort to Comply with UN Sustainable Development Goals
by Thomas M. T. Lei, Jianxiu Cai, Altaf Hossain Molla, Tonni Agustiono Kurniawan and Steven Soon-Kai Kong
Sustainability 2024, 16(17), 7477; https://doi.org/10.3390/su16177477 - 29 Aug 2024
Cited by 10 | Viewed by 2239
Abstract
To comply with the United Nations Sustainable Development Goals (UN SDGs), in particular with SDG 3, SDG 11, and SDG 13, a reliable air pollution prediction model must be developed to construct a sustainable, safe, and resilient city and mitigate climate change for [...] Read more.
To comply with the United Nations Sustainable Development Goals (UN SDGs), in particular with SDG 3, SDG 11, and SDG 13, a reliable air pollution prediction model must be developed to construct a sustainable, safe, and resilient city and mitigate climate change for a double win. Machine learning (ML) and deep learning (DL) models have been applied to datasets in Macau to predict the daily levels of roadside air pollution in the Macau peninsula, situated near the historical sites of Macau. Macau welcomed over 28 million tourists in 2023 as a popular tourism destination. Still, an accurate air quality forecast has not been in place for many years due to the lack of a reliable emission inventory. This work will develop a dependable air pollution prediction model for Macau, which is also the novelty of this study. The methods, including random forest (RF), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU), were applied and successful in the prediction of daily air pollution levels in Macau. The prediction model was trained using the air quality and meteorological data from 2013 to 2019 and validated using the data from 2020 to 2021. The model performance was evaluated based on the root mean square error (RMSE), mean absolute error (MAE), Pearson’s correlation coefficient (PCC), and Kendall’s tau coefficient (KTC). The RF model best predicted PM10, PM2.5, NO2, and CO concentrations with the highest PCC and KTC in a daily air pollution prediction. In addition, the SVR model had the best stability and repeatability compared to other models, with the lowest SD in RMSE, MAE, PCC, and KTC after five model runs. Therefore, the results of this study show that the RF model is more efficient and performs better than other models in the prediction of air pollution for the dataset of Macau. Full article
Show Figures

Figure 1

19 pages, 9450 KB  
Article
Deep Learning in Unmanned Surface Vehicles Collision-Avoidance Pattern Based on AIS Big Data with Double GRU-RNN
by Jia-hui Shi and Zheng-jiang Liu
J. Mar. Sci. Eng. 2020, 8(9), 682; https://doi.org/10.3390/jmse8090682 - 4 Sep 2020
Cited by 45 | Viewed by 5233
Abstract
There is a collection of a large amount of automatic identification system (AIS) data that contains ship encounter information, but mining the collision avoidance knowledge from AIS big data and carrying out effective machine learning is a difficult problem in current maritime field. [...] Read more.
There is a collection of a large amount of automatic identification system (AIS) data that contains ship encounter information, but mining the collision avoidance knowledge from AIS big data and carrying out effective machine learning is a difficult problem in current maritime field. Herein, first the Douglas–Peucker (DP) algorithm was used to preprocess the AIS data. Then, based on the ship domain the risk of collision was identified. Finally, a double-gated recurrent unit neural network (GRU-RNN) was constructed to learn unmanned surface vehicle (USV) collision avoidance decision from the extracted data of successful encounters of ships. The double GRU-RNN was trained on the 2015 Tianjin Port AIS dataset to realize the effective learning of ship encounter data. The results indicated that the double GRU-RNN could effectively learn the collision avoidance pattern hidden in AIS big data, and generate corresponding ship collision-avoidance decisions for different maritime navigation states. This study contributes significantly to the increased efficiency and safety of sea operations. The proposed method could be potentially applied to USV technology and intelligence collision avoidance. Full article
(This article belongs to the Special Issue Unmanned Marine Vehicles)
Show Figures

Figure 1

Back to TopTop