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Abstract: By adjusting the propagation environment using reconfigurable reflecting elements, in-
telligent reflecting surfaces (IRSs) have become potential techniques used to improve the efficiency
of wireless communication networks. In IRS-assisted communication systems, accurate channel
estimation is crucial for optimizing signal transmission and achieving high spectral efficiency. As
mobile data traffic continues to surge and the demand for high-capacity and low-latency wireless
connectivity grows, IRSs are becoming pivotal technologies in the development of next-generation
communication networks. IRSs offer the potential to revolutionize wireless propagation environ-
ments, improving network capacity and coverage, particularly in high-frequency wave scenarios
where traditional signals encounter obstacles. Amidst this evolving landscape, machine learning
(ML) emerges as a powerful tool to harness the full potential of IRS-assisted communication sys-
tems, particularly given the escalating computational complexity associated with deploying and
operating IRSs in dynamic environments. This paper presents an overview of preliminary results for
IRS-assisted communication using recurrent neural networks (RNNs). We first implement single-
and double-layer LSTM, BiLSTM, and GRU techniques for an IRS-based communication system.
In the next phase, we explore a hybrid approach, combining different RNN techniques, including
LSTM-BiLSTM, LSTM-GRU, and BiLSTM-GRU, as well as their reverse configurations. These RNN
algorithms were evaluated with respect to bit error rate (BER) and symbol error rate (SER) for IRS-
enhanced communication. According to the experimental results, the BiLSTM double-layer model
and the BiLSTM-GRU combination demonstrated the highest BER and SER accuracy compared to
other approaches.

Keywords: intelligent reflecting surface; machine learning; recurrent neural network

MSC: 94A14

1. Introduction

The intelligent reflecting surface (IRS) is evaluated as a novel radio technology for en-
hancing wireless communication systems. To improve the spectral efficiency of upcoming
wireless networks, significant attention has been given to IRS, a planar metasurface com-
posed of multiple reflecting elements [1]. Communication systems can be greatly enhanced
because the IRS proactively alters the wireless channel by enabling each reflecting element
to adjust the incident signal with a desired phase shift [2]. This allows the IRS to create
a virtual line-of-sight (LoS) link between user equipment (UE) and the base station (BS),
particularly when obstacles block the direct path between them. This capability increases
the degree of freedom (DoF) in terms of flexibility and reduces end-to-end latency for ultra-
reliable low-latency communication (URLLC) applications [3]. Smartphones and other
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web-enabled devices have become essential tools for global communication, information
sharing, and entertainment. The wireless communications sector is currently at an exciting
juncture: while the fifth-generation (5G) technology has largely been standardized and
commercialized, there is a growing focus on the sixth-generation (6G) wireless technology
within both academia and industry. The Cisco annual internet report (2018–2023) has stated
mobile connectivity is expected to reach over 70% of the world’s population by 2023 [4].
Additionally, the mobile subscriber number is projected to increase from 5.1 billion in
2018 to 5.7 billion by 2023. This signifies a pivotal moment in the wireless sector, with
strong momentum toward advancing to the next level of wireless technology to meet the
increasing global demand for connectivity [5,6].

Due to increasingly aggressive frequency reuse, cellular networks have grown denser,
leading to the development of intercellular synchronization technologies to manage this
complexity [7]. However, the unpredictable nature of wireless transmission and the limited
available spectrum continue to constrain network capacity. As a result, higher-frequency
bands with abundant spectra are gradually gaining popularity. However, in urban areas,
electromagnetic (EM) waves at these higher frequencies are more susceptible to blockage
by structures such as buildings. To mitigate communication gaps and enhance network
coverage, it requires more energy to deploy additional relays and BSs. Consequently,
providing wireless service coverage using traditional cellular technologies becomes increas-
ingly challenging. In response to the spectrum shortage faced by communication systems,
IRSs have emerged as a key solution, offering the potential to achieve high spectrum and
energy efficiency [8].

The utilization of machine learning (ML) techniques in wireless communications,
particularly in the context of IRSs [9–12], has garnered significant attention due to their
adaptability and the need to operate across broader search areas. In recent years, numerous
researchers have explored diverse ML algorithms tailored to the communication sector
in an effort to address challenges within this domain. These efforts aim to enable infras-
tructure to autonomously overcome various obstacles. Typically, ML methods involve
learning parameters and optimization models based on input data to achieve specific
objectives. Given the substantial volume of data involved, the efficiency and effectiveness
of mathematical optimization procedures are crucial in determining the popularity and
application of ML models in the current landscape [13].

By minimizing inter-user interference (IUI), improving non-line-of-sight connections,
managing channel blockages, and expanding coverage, Intelligent reflecting surfaces (IRSs)
have shown significant potential for enhancing wireless communications. Each IRS compo-
nent can adjust the phase shifts and amplitude reflection coefficients, modifying the phase
and amplitude of incoming signals to enable passive beamforming (BF). Unlike traditional
MIMO systems, which focus on beamforming at the base station (BS) and user ends, IRS-
assisted communication systems require a joint design of passive BF for IRSs and active
BF for BS to effectively harness passive BF gains. Additionally, by employing large-scale
passive reflecting components, IRS-assisted systems can enhance both energy efficiency
(EE) and spectrum efficiency (SE) while remaining cost-effective and energy-efficient. Re-
cent research has explored various aspects of IRS-supported wireless networks, including
channel estimation, modulation and encoding, channel modeling, outage probability, SE
analysis, symbol error rate (SER) probability, bit error rate (BER) probability, energy effi-
ciency, weighted sum rate, and performance assessment. The extensive research on these
topics reflects the enormous potential benefits offered by IRS-enabled environments.

In this paper, we present an overview of the in-depth results of IRS-assisted communi-
cation using RNNs. RNN algorithms can efficiently handle temporal dependencies, which
can be used for time-varying systems like IRS-based wireless communication systems [14].
In addition, RNN algorithms can help obtain accurate channel state information for the IRS
channel. One of the core tasks in IRS-based communication is beamforming, where signals
are reflected in specific directions to maximize signal strength and minimize interference.
RNNs can help optimize this process by continuously learning the optimal reflection angles
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and phase shifts over time. RNNs can reduce the computational time required to process
data for IRS-based channels. Various RNN algorithms were implemented to evaluate per-
formance in terms of BER and SER probability for IRS-enhanced communication. The types
of used RNN algorithms are shown in Figure 1. We examine single-layer and double-layer
LSTM, BiLSTM, and gated recurrent units (GRU) models for IRS-based communication.
This experiment aims to assess the effectiveness of each RNN model and provide a compar-
ative analysis of the results. In the next phase, we create hybrid models by combining two
RNN techniques to observe their performance in IRS-based communication. Specifically,
LSTM and BiLSTM are combined to form one hybrid model, and vice versa. Similarly,
LSTM and GRU are combined to create another hybrid model, and vice versa. Lastly, we
consider a combination of GRU and BiLSTM for IRS-based communication, and vice versa.

Figure 1. Types of RNN algorithms.

In this paper, the main contributions can be stated as follows:

• The goal of this experiment is to estimate the channel for intelligent reflecting surface-
based wireless communication using RNN algorithms. Different combinations of
RNN algorithms are considered for channel estimation.

• Rather than using traditional CE techniques like LS and MMSE, the suggested LSTM,
BiLSTM, and GRU combined model can jointly estimate and identify the transmitted
data from BS to UE.

• Comparative simulation results are presented to evaluate the effectiveness of the
suggested system with respect to BER and SER measures.

The rest of the article is organized as follows: Section 3 presents the wireless com-
munication system model with IRS, including the reflecting elements and the training
data generation process. Section 4 describes the RNN models, while Section 5 details the
proposed model using RNN techniques. Section 6 presents the simulation results, and
Section 7 provides the conclusions.

2. Related Works

The utilization of machine learning (ML) techniques in wireless communications,
particularly in the context of IRSs [9–12], has garnered significant attention due to their
adaptability and the ability to operate across broader search areas. In recent years, nu-
merous researchers have explored diverse ML algorithms tailored to the communication
sector in an effort to address the challenges within this domain. These efforts aim to enable
communication infrastructure to autonomously overcome various obstacles. Typically, ML
methods involve learning parameters and optimization models from input data to achieve
specific objectives. Given the substantial volume of data involved, the efficiency and ef-
fectiveness of mathematical optimization procedures play a crucial role in determining
the popularity and application of ML models in the current landscape [13]. Today, ML
is applied to solve many aspects of IRS-based communication, with key areas of applica-
tion including channel estimation, beamforming, energy efficiency, resource management,
signal detection, and security [15]. Various approaches have been adopted to address
different problems, such as supervised learning, unsupervised learning, reinforcement
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learning, federated learning, graph learning, transfer learning, hierarchical learning, and
meta-learning [16]. In supervised learning, models are trained with labeled data using al-
gorithms such as deep neural networks, convolutional neural networks, decision trees, and
support vector machines for IRS-based communication [17]. Unsupervised learning, on the
other hand, is applied when input data lacks labels, and results are organized into clusters
using methods like k-means or unsupervised neural networks. Reinforcement learning
has gained particular attention due to its strong problem-solving capabilities. Common
reinforcement learning algorithms include Q-learning, actor-critic learning, multi-agent
learning, and double-deep Q-learning. Federated learning allows local models to share
parameters in order to create a robust global model, which is particularly desirable for
user privacy. Graph-based learning, using graph neural networks, has also been studied
extensively. Transfer learning, which reuses existing knowledge to speed up the current
learning process, is valued for achieving faster training results. Hierarchical learning
divides complex tasks into sub-tasks and solves them from the root level. Finally, meta-
learning enhances performance by utilizing the experience gained from prior learning tasks.
In the literature, various studies have explored recurrent neural network (RNN) techniques
for IRS-based communication. A stacked bidirectional LSTM (BiLSTM) architecture for
IRS-assisted UAV communication systems was proposed in [12]. A long short-term mem-
ory (LSTM)-based neural network for IRS channel tracking and prediction was introduced
in [18]. Additionally, Ref. [19] proposed a prediction method that considers the movement
of wireless terminals in IRS-based communication as time series data, using LSTM for this
purpose. The study in [20] proposed IRS-assisted NOMA network channel estimation using
a convolutional neural network (CNN)-LSTM approach. The authors in [21] applied ML
techniques to solve complex optimization problems in wireless communication systems. By
combining a hybrid approach of ML-driven method and model-free optimization approach,
the results show this approach can increase learning efficiency.

3. System Model
3.1. IRS Architecture and Working

When an electromagnetic (EM) wave encounters the boundary between two isotropic
mediums, the relationship between the angles of incidence, reflection, and refraction is
described by Snell’s law. In standard cases, the angle of incidence equals the angle of
reflection for smooth surfaces, as shown in Figure 2a. However, recent developments in
metasurfaces allow modifying surface impedance to induce specific phase shifts between
incident and scattered waves. By dividing the surface into many small elements, each
programmed with a particular phase shift, the reflected EM wave can be steered to a
different angle than predicted by Snell’s law. As shown in Figure 2b, a fully configurable
phase shift for each metasurface element can direct the reflected beam to any desired
angle. In practice, achieving precise or continuous phase shifts is challenging due to
control complexities, making signal processing and machine learning techniques useful for
designing IRSs [22].

Figure 2. (a) The regular reflector; (b) IRS reflector.
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IRSs are made up of a wide range of inexpensive passive reflecting components that
are capable of adjusting the incident electromagnetic wave phase, amplitude, and even
polarization. The propagation environment of wireless signals may be dynamically adjusted
using these programmable surfaces. For a variety of purposes, including boosting signal
strength, lowering interference, or covering regions with poor signals, IRSs in wireless
communication systems work by reflecting and redirecting signals. An example of an
IRS-aided wireless system in action is shown in Figure 3.

Figure 3. IRS working principle in wireless mobile communication system.

Here is how IRSs work in a typical wireless communication setup:
Signal Transmission: A signal is transmitted from a BS or user toward the IRS. Surface

Reflection: The IRS components are adjusted to modify the incoming signal’s phase and/or
amplitude in order to direct it toward the intended target, which might be a BS or another
user. Signal Reception: The modified signal reaches the receiver with enhanced quality,
having avoided obstacles, reduced interference, and optimized the transmission path for
improved signal strength and reliability.

In order to provide a smart propagation environment where wireless communication
is boosted without the need for active, power-hungry components like amplifiers, IRSs
may be managed in real-time to react to changing environmental circumstances, such as
user movement or barriers. Key motivations behind using IRSs in wireless communication
are listed as follows:

• Improved signal coverage: IRSs may greatly increase the coverage area, especially in areas
with many impediments, by reflecting signals around objects like walls or buildings
that often impede wireless signals.

• Energy efficiency: IRSs may reflect signals with low energy usage as it is made up
of passive components that do not require active, power-hungry transmitters. This
lowers the total energy consumption of wireless networks.

• Reduced interference: IRSs may reduce interference by carefully rerouting communica-
tions away from places or devices that cause interference. This is especially helpful
when there are lots of devices interacting at once in congested areas.

• Enhanced spectral efficiency: IRSs aid in the effective use of the available spectrum by
modifying the wireless environment and boosting the data rates and overall capacity
of wireless networks.

• Cost-effective deployment: As an IRS is passive, it is less expensive to install and operate
than power-hungry relays or new base stations. This makes it a more cost-effective
option overall.

• Support for 5G and beyond: By improving communication at high-frequency bands like
millimeter waves (mmWave), which are vulnerable to high route loss and limited
penetration, IRSs can supplement 5G technology.
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The common perception of relays is that they are active components that require
a separate power supply to function. The devices are furnished with active electronic
components, including mixers, low-noise amplifiers for receiving, power amplifiers for
transmission, and digital-to-analog converters (DACs and ADCs). Decoder-and-forward
(DF) and amplify-and-forward (AF) relays usually need a number of electrical components.
This means that relays to implement multiple-antenna systems in millimeter and submil-
limeter wave frequency bands may be expensive and energy-intensive [23]. On the other
hand, IRSs are composite material layers composed of printed metallic or dielectric patches
on a grounded dielectric substrate. Low-power, low-complexity electronic circuits (switches
or varactors) guarantee their configurability [24]. Since discrete power amplifiers, mixers,
and DACs/ADCs are typically not needed, IRSs are intended to be less complicated than
relays, especially when IRSs are implemented in large quantities and with low-cost big-area
electronics [25]. The additive noise that exists in relays and degrades the functionality of
traditional relaying methods is caused by the active electrical components employed in
relays [25]. However, additive noise does not affect IRSs that exhibit aberrant reflector
behavior. Nevertheless, phase noises might interfere with them [26]. Furthermore, they
are unable to amplify or renew the impulses if they are almost inactive [27]. The spectral
efficiency of relay-assisted systems depends on the duplexing method. A half-duplex (HD)
reduces the rate by half but can improve the signal-to-noise ratio. A full-duplex (FD) avoids
this but introduces interference from simultaneous transmissions. IRSs bypass these issues,
as they do not face HD constraints or self-interference and can enhance signal combinations
by optimizing their reflection properties [25].

3.2. IRS System Structure

The IRS-assisted communication model consists of a transmitter, a receiver, and IRS-
reflecting elements. In this study, we consider IRS-assisted communication as shown in
Figure 4. We consider each user, I, to have a single antenna, and the serving base station
(BS) has a uniform linear array of L antennas. The number of IRS elements is considered
as N. The received signal for the i-th (i = 1, 2, 3, ..., I) user from the IRS can be expressed
as follows:

yi = HH
z,iΦHx + ni, (1)

where yi is the received signal at the i-th user, x ∈ CL×1 is the transmitted signal, H ∈ CN×L

is the channel matrix from the BS to IRS, HH
z,i is the channel from the IRS to the i-th

user, and ni ∼ CN (0, σ2) is the additive white Gaussian noise (AWGN) at the i-th user.
Again, Φ = diag(d) ∈ N×N represents a diagonal matrix that contains phase shift values
of reflective elements of the IRS, where d = [β1ejϕ1 , β2ejϕ2 , ..., βNejϕN ]T ∈ CN×1, and
ϕN ∈ [0, 2π] and βN ∈ [0, 1] denote the phase coefficient and amplitude of the i-th reflective
element, respectively. For the experiment in this study, we consider βN = 1. We also
consider that the direct link between BS and the user exists and is expressed as Hd ∈ CL×1.
The Φ is considered as a diagonal matrix, i.e., Φ = diag(d). The channel from the BS to the
user via the IRS can be transformed as follows:

HH
z,iΦH = HH

z,idiag(d)H = dTdiag(HH
z,i)H, (2)

Hc = HH
z,iΦH, (3)

where Hc is the cascaded channel for the i-th user and Hc ∈N×L, which relies on the
downlink channel state information. We can write the total channel using both the cascaded
channel and direct channel as follows:

yti = (Hc + Hd)x + ni, (4)

where the direct communication link is Hd from the BS to the i-th user.
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Figure 4. IRS-based communication system.

The three-dimensional (3D) Saleh–Valenzuela channel model is adapted for millimeter-
wave (mmWave) propagation [28]. This method is a statistical channel model in a multipath
propagation scenario. The channel model for mmWave propagation can be expressed as
follows [10]:

Hmm =

√
N
T

T

∑
t=1

ηta(ρH
t , ϕH

t ), (5)

where H is the channel vector, the t-th path complex gain is represented as ηt, and the total
number of paths is T. The elevation angle of departure and azimuth angle of departure for
transmission signals are ϕH

t and ρH
t , respectively. The array response vector is expressed as

a(ρH
t , ϕH

t ). We can express the array response vector as follows:

a(ρ, ϕ) =
1√
N
[e−j2πd sin(ρ) cos(ϕ)n1/λ]⊗ [e−j2πd sin(ϕ)n2/λ], (6)

where λ is the carrier wavelength, d is the antenna spacing, n1 = [0, 1, ...., N1 − 1], n2 =
[0, 1, ...., N2 − 1], and (N = N1 × N2). For proper communication, the antenna spacing
satisfies the condition of d = λ/2. Again, the BS channel H to the IRS channel can be
expressed as follows:

H =

√
LN
T1

T1

∑
t1=1

ηt1 b(ρHr
t1

, ϕHr
t1
)aH(ρHt

t1
, ϕHt

t1
)T , (7)

where T1 represents the number of paths between the BS and IRS, η1 stands for the complex
gain of the paths available from the BS to IRS, b(ρHr

t1
, ϕHr

t1
) is the steering vector related to

IRS elements, and aH(ρHt
t1

, ϕHt
t1
) is the steering vector connected to the BS for the t1-th path.

To define the channel between the IRS and the user, the channel matrix can be described
as follows:

HH
z,i =

√
N
T2

T2

∑
t2=1

ηt2 aH(ρHt
t2

, ϕHt
t2
), (8)

where the complex gain of paths is represented as ηt1 ; T2 is the number of paths between
the IRS and the user, ρHt

t1
is the departure angle in the azimuth direction, and ρHt

t1
is the
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elevation angle. The array response vector is represented as aH(ρHt
t1

, ϕHt
t1
). Thus, the total

channel can be written as follows:

Hc =

√
LN

T1T2

T1

∑
t1=1

T2

∑
t2=1

ηt1 ηt2 diag(aH(ρHt
t2

, ϕHt
t2
))b(ρHr

t1
, ϕHr

t1
)aH(ρHt

t1
, ϕHt

t1
)T . (9)

3.3. Data Generation for Training from the IRS Network

The data generation and model training processes are illustrated in Figure 5. In the
first phase, a random binary data sequence is generated for transmission. The generated
bits are then transformed into OFDM symbols, using 128 subcarriers with quadrature phase
shift keying (QPSK) modulation for symbol generation. The data symbols are transmitted
through a simulated transmission channel that considers IRS reflection. The channel state
information (CSI) is acquired using the Rayleigh fading model. Pilot signals are transmitted
through the IRS channel, and the CSI is estimated based on the received data. Once the
CSI is obtained, the training signals are transmitted through the channel and used for
model training. The channel simulation parameters are listed in Table 1. The direct link
is also considered when the received signal is calculated. Upon reception, the signal is
demodulated, and the data symbols are retrieved. Sixteen unique symbols are used, and
each symbol is assigned as a label value for classification. The real and imaginary parts of
the symbols are separated to generate training data, as complex numbers cannot be directly
used in the machine learning training process. A total of 64,000 samples were generated for
the training and testing process. Of these, 512,000 data symbols were used for training, and
128,000 symbols were used for testing. Two separate datasets were saved as training and
test datasets for model training and evaluation. Each model was then trained using RNN
techniques, and the training progress was monitored. Hyperparameters were tuned to
optimize performance and improve model accuracy. After training, the test data were used
to evaluate each model’s performance on unseen data and were measured as test accuracy.
Following this step, the model could be used for IRS-based channel prediction.

Figure 5. Training data generation and training process flowchart.



Mathematics 2024, 12, 2973 9 of 20

Table 1. Simulation parameters.

Parameter Value

Number of IRS elements 512
Number of paths of BS to IRS 2

Number of paths of IRS to user 4
Antenna spacing for transmitter 0.5λ

IRS element spacing 0.5λ
Transmitter antenna 2

Receiver antenna 2
OFDM subcarrier 128

Modulation QPSK
Noise for channel AWGN

4. Recurrent Neural Network Models

This section briefly describes the fundamentals of LSTM, Bi-LSTM, and GRU ap-
proaches. After that, the proposed model descriptions are given.

4.1. LSTM Working Structure

Specialized memory cells with gating mechanisms are incorporated into LSTM net-
works, enabling them to store, update, and retrieve data selectively over long durations.
Because of their distinct architecture, LSTM networks are better able to learn complex
temporal patterns and relationships than ordinary RNNs, which helps them overcome
some of their limitations. The input gate, forget gate, output gate, and cell state are the main
parts of an LSTM unit. They manage information flow and maintain pertinent data through-
out several time steps. LSTM networks are powerful tools for jobs requiring long-range
temporal modeling and prediction because they can capture complex dependencies and
context within sequential data by efficiently controlling the flow of information through
the network. Figure 6a shows the internal structure of an LSTM cell. The gates of the LSTM
can be mathematically expressed as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (10)

ft = σ(Wx f xt + Wh f ht−1 + Wc f ct−1 + b f ) (11)

gt = tanh(Wxgxt + Whght−1 + bg) (12)

ct = ft ⊙ ct−1 + it ⊙ gt (13)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (14)

ht = ot ⊙ tanh(ct), (15)

where at time step t, the input is xt, at the t− 1 time step, the hidden state is expressed as
ht−1, from the previous time step, ct−1 is the cell state, the input gate vector is it, the forget
gate vector is ft, the update gate vector is gt, the output gate vector is ot, σ is the sigmoid
activation function, element-wise multiplication is represented as ⊙, the weight matrix is
W, and the bias vector is b. The input layer is connected to the LSTM layer, and the data
then move through a fully connected layer and a dropout layer. Lastly, a classification layer
is applied to determine the class that the input data belong to. The model can efficiently
process sequential data, identify pertinent features, and produce precise predictions due to
its architecture.
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Figure 6. (a) Internal structure of LSTM [29], (b) internal structure of BiLSTM [30], (c) internal
structure of GRU [31].

4.2. BiLSTM Working Structure

BiLSTM networks are extensions of the traditional LSTM architecture designed to store
dependencies in sequential data in both directions. BiLSTMs employ two distinct LSTM
layers (one for forward-processing input sequences and another for backward-processing)
instead of traditional LSTMs, which process input sequences sequentially from the past to
the future. The network’s bidirectional processing allows future and past contexts, which
facilitates a more full understanding of the input sequence. The internal organization of
the BiLSTM is depicted in Figure 6b. For every time step in a BiLSTM, the output of each
LSTM layer is merged, combining data from both directions. This concatenated form,
which incorporates context from the past and future, represents the input sequence as a
whole. Tasks requiring context from both sides, like named entity recognition, sentiment
analysis, and part-of-speech tagging, are especially well-suited for BiLSTMs. Because
BiLSTMs are bidirectional, they are effective at capturing contextual information and long-
range relationships, which improves their performance in a variety of sequence modeling
applications. But keep in mind that because BiLSTMs must process input sequences in
both ways, they may add to the computational complexity. However, they are a popular
option in many sequence prediction and natural language processing applications due
to their capacity to take advantage of bidirectional context. BiLSTM can be expressed as
follows [32]:

−→
h f = σ(W f St + W f ht−1 + b f ), (16)
←−
hr = σ(WrSt + Wrht+1 + br), (17)

where the activation function is expressed as σ, the forward and backward time steps are
represented as t− 1 and t + 1, the transmitted signal is St, the hidden state of the previous
step is ht−1, the hidden state of next state is ht+1, the weights for the forward and reverse
direction are W f and Wr, learnable biases of forward and reverse directions are b f and br,
h f → is the forward direction of network output, and hr ← is the backward direction of
the LSTM network output, respectively. A dropout layer comes after the BiLSTM layer
receives the input data. The input data are then classified using a fully connected layer
and a classification layer. This architecture improves the model’s capacity to effectively
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minimize interference by allowing it to capture context information from the past and
the future.

4.3. GRU Working Structure

RNN architectures, such as the vanishing gradient problem and the incapacity to
accurately capture long-term dependencies, are addressed by the GRU. Because GRUs
are made to update and reset their internal state selectively, they can avoid consuming
superfluous memory and retain pertinent information across longer sequences. The update
gate and the reset gate are two of the main parts of the GRU design. Figure 6c illustrates
GRU’s internal organization. At every time step, these gates decide which data to keep and
which to delete, controlling the flow of information through the network. At every time
step, these gates decide which data to keep and which to delete, controlling the flow of
information through the network. In addition, GRUs have a candidate state calculation
phase that uses the reset gate and the current input to create a new candidate state. The
final concealed state for the current time step is then created by combining the output of the
update gate with this candidate state. GRUs have several advantages over conventional
RNNs, one of which is their reduced parameter requirements and improved ability to
capture long-term dependencies. Because of this, GRUs are especially well suited for
sequential data tasks including time series prediction, machine translation, and language
modeling. Furthermore, because of their more straightforward architecture, GRUs can
be trained more quickly than LSTMs, which makes them a preferred option for many
recurrent neural network applications. The GRU calculation procedure is explained using
the formulas as follows [33]:

Ut =σ(GUXt + OU Ht−1 + bU) (18)

Rt =σ(GRXt + ORHt−1 + bR) (19)

Ĥt = tanh(GHXt + OH(Rt ⊗ Ht−1) + bH) (20)

Ht =(1−Ut)⊗ Ht−1 + Ut ⊗ Ĥt, (21)

where the biases are expressed as, respectively, bU , bR, and bH . Again, GU , GR, GH , OU ,
OR, and OH are weight matrices. σ(c) = (1 + e−c)

−1 is used to calculate the gate activation
function and expressed as a sigmoid function. The output of the hidden layer at the current
instant is denoted as Ht, while the input state Xt and the output of the hidden layer at the
preceding instant are combined to yield Ĥt. The state activation function is computed via
the hyperbolic tangent function, (tanh). This uniformity makes it possible to assess the
effectiveness of various RNN techniques for interference management fairly.

5. Proposed Model Architecture

We consider different RNN approaches for this study to estimate the channel perfor-
mance for IRS-based communication. Two different approaches are considered for the
experiment. First, the RNN techniques, namely LSTM, BiLSTM, and GRU, are tested with
a single layer and double layer. Figure 7 shows the model architecture for a single RNN
approach. To make a fair comparison, we keep the overall architecture similar for each
technique. Each layer starts with a sequence input layer followed by an RNN layer and a
dropout layer. Another RNN layer and dropout layer are added for the double layer. After
that, layer normalization is applied and a fully connected layer is added. Finally, softmax
and classification layers are used to classify the input data. LSTM, BiLSTM, and GRU
single and double-layer architectures are shown in Figure 7a–c. In the next step, a hybrid
approach is applied to see the performance of each combination. We consider combining
two approaches, i.e., LSTM-BiLSTM, LSTM-GRU, and BiLSTM-GRU, and vice-versa. The
model architectures for the LSTM and BiLSTM layers are shown in Figure 8a. The positions
of the LSTM and BiLSTM layers are interchanged to observe the model accuracy effect.
Similarly, the LSTM and GRU layer-based model architectures are shown in Figure 8b. The
LSTM and GRU layers are switched for model accuracy observations. Lastly, BiLSTM and
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GRU model architectures are presented in Figure 8c. Here, the positions of the BiLSTM layer
and the GRU layer are changed for model accuracy improvements. The other parameter
for model training is presented in Table 2.

Figure 7. (a) LSTM model for the single layer and double layer, (b) BiLSTM model for the single layer
and double layer, (c) GRU model for the single layer and double layer.

Table 2. Machine learning parameters.

Parameter Value

Minibatch size 200
Maximum number of episodes 25

Learning rate 0.001
Hidden units 200

Number of classes 16
Dropout rate 0.02

Optimizer ADAM
Gradient threshold 1

Validation frequency 50
Shuffle every episode

Iteration per episode 2560
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Figure 8. (a) LSTM and BiLSTM combination model, (b) LSTM and GRU combination model,
(c) BiLSTM and GRU combination model.

6. Results
6.1. Model Training

Each model is trained using the generated dataset. First, we examined the LSTM
model with the generated dataset under different hyperparameter setups. Table 2 lists
the optimal hyperparameters for the best training results. Figure 9a shows the training
progress of the LSTM with single and double layers. Both models exhibit a similar trend in
reducing loss; however, the single-layer LSTM model reaches stable accuracy sooner than
the double-layer model. For the BiLSTM model, the trend of the loss and accuracy curves
during the training phase is shown in Figure 9b. As the number of layers increases, the
training accuracy remains almost unchanged. The accuracy and loss of GRU-based models
are depicted in Figure 9c, where the double-layer GRU achieves slightly higher accuracy
than the single-layer GRU model.
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Figure 9. Model training summary; (a) LSTM single and double layer, (b) BiLSTM single and double
layer, and (c) single and double layers.

Figure 10 shows the training and loss curves for the hybrid models. The training
curves for the LSTM-BiLSTM model are presented in Figure 10a. The validation accuracy
for the LSTM-BiLSTM model is lower than that of the BiLSTM-LSTM model, indicating
that the BiLSTM-LSTM model can extract more features from the training data and is
expected to yield better results compared to the LSTM-BiLSTM model. Figure 10b displays
the training curves for the LSTM-GRU and GRU-LSTM models. At the beginning of the
training process, the LSTM-GRU model shows instability, but by the end of the training, it
becomes more stable and comparable to the GRU-LSTM model. The BiLSTM-GRU and
GRU-BiLSTM models are shown in Figure 10c. Both models exhibit similar trends and are
expected to have comparable prediction results.

Figure 10. Model training summary (a) LSTM-BiLSTM model and BiLSTM-LSTM model, (b) LSTM-
GRU model and GRU-LSTM model, and (c) BiLSTM-GRU model and GRU-BiLSTM model.

6.2. Results of Individual RNN Techniques

We first describe the results of the RNN techniques with single and double layers.
The BER performance of the single-layer LSTM is shown in Figure 11. At an SNR value of
30 dB, the BER reaches 8.18× 10−4. However, when the number of layers is increased, the
performance decreases to 9.47× 10−4. This decline is likely due to the feature extraction
process being less effective in the double-layer configuration compared to the single-layer
setup. A similar trend is observed in Figure 12, which depicts the SER for both the single-
layer and double-layer LSTM models. The single-layer BiLSTM, on average, performs
better than the LSTM, with the best performance achieved by the double-layer BiLSTM,
as shown in Figures 11 and 12. At 30 dB SNR, the BER is 2.89× 10−4, and the SER is
9.95× 10−4. For the single-layer GRU, the BER performance is better than both the LSTM
and the single-layer BiLSTM. In contrast, the double-layer GRU shows better performance
across all SNR ranges, with the second-highest BER performance, as GRU is effective in
feature extraction.
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Figure 11. BER of LSTM, BiLSTM, and the GRU model for single and double layers.

Figure 12. SER of LSTM, BiLSTM, and the GRU model for single and double layers.

6.3. Hybrid Model Performances

The combination of BiLSTM and LSTM was experimented with in the first step. The
input data are first passed through a BiLSTM layer and then through an LSTM layer.
The BER results for the BiLSTM-LSTM combination are shown in Figure 13, with a value
of 2.08× 10−4 at an SNR of 30 dB. However, when the layer order is reversed, the BER
increases to 2.64× 10−4. This indicates that IRS channel data demodulation is more accurate
with the BiLSTM-LSTM combination. A similar trend is observed in Figure 14, which shows
the SER performance for both BiLSTM-LSTM and LSTM-BiLSTM layers. Next, we consider
the LSTM-GRU and GRU-LSTM layer combinations for IRS communication. As seen in
Figure 13, the LSTM-GRU layer combination achieves BER of 2.38× 10−4, while the GRU-
LSTM combination has a BER of 2.86× 10−4 at 30 dB SNR. This indicates better performance
for the LSTM-GRU combination compared to GRU-LSTM, as LSTM can extract primary
features more accurately, and GRU can be applied for classification. This combination
demonstrates better accuracy compared to LSTM-BiLSTM. The SER for the LSTM and
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GRU combination is shown in Figure 14. The final considered combination is between
BiLSTM and GRU. Both combinations yield excellent results for BER and SER. At 30 dB
SNR, the GRU-BiLSTM combination has a BER of 9.72× 10−5, while the BiLSTM-GRU
combination achieves a BER of 9.45× 10−5. Among all the combinations, BiLSTM-GRU
demonstrates the best BER performance. Since BiLSTM processes data in both forward and
backward directions, its feature extraction capabilities are enhanced. Additionally, the GRU
layer helps extract important features, leading to high classification accuracy. Thus, the
BiLSTM-GRU-based model achieves more accurate results compared to other combinations.

Figure 13. BER of LSTM, BiLSTM, and GRU hybrid models.

Figure 14. SER of LSTM, BiLSTM, and GRU hybrid models.

We also compared the performance of the proposed RNN architecture with a tradi-
tional wireless communication system without IRS reflection. For this experiment, we
adopted three hybrid models, BiLSTM-GRU, GRU-BiLSTM, and LSTM-BiLSTM, as these
models perform well in IRS reflection channels. As shown in Figure 15, all models demon-
strate good performance at certain SNRs, but the overall performance is not satisfactory.
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Specifically, in the high SNR range, the system without IRS fails to achieve low BER com-
pared to the IRS-based system. This result highlights the superior BER performance of
IRS-based systems.

Figure 15. Comparison of the wireless communication channel performance with and without IRS
using RNN hybrid models.

BiLSTM-GRU model’s performance was also evaluated with other studies in the lit-
erature. Figure 16 compares the performance with other similar studies. The proposed
BiLSTM-GRU model can perform well as compared to TCN [34] and traditional demodula-
tion techniques. However, it has a similar performance to Demod-CNN [35] as CNNs are
very powerful in classifying data.

Figure 16. Comparison with different deep learning models with the proposed BiLSTM-GRU model.
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7. Conclusions

In this study, we considered an IRS-based wireless communication system and con-
ducted a performance analysis using RNN approaches. We examined both the IRS-reflected
signal and the direct signal for channel estimation. To apply machine learning, we specifi-
cally focused on RNN techniques, namely LSTM, BiLSTM, and GRU, for estimating the IRS
channel. First, each individual RNN technique was studied with single and double layers.
In this setup, the BiLSTM with double layers showed the best BER performance compared
to LSTM and GRU. In the next step, a hybrid approach was considered by combining
each of the RNN techniques. The experimental results demonstrated that individual RNN
techniques are capable of learning data patterns from the training process. Among the
RNN techniques, the BiLSTM double-layer model achieved the highest accuracy compared
to the LSTM and GRU models. In the hybrid approach, the BiLSTM-GRU combination
provided the best performance in terms of BER and SER. We also compared our results
with previous algorithms, and the outcomes are comparable to other studies. When the CSI
and channel parameters are varied, the model must be adjusted to achieve optimal results.
Retraining the model with newly generated data is necessary. Additionally, the model
architecture may need to be restructured to reduce the BER. This study can be extended to
develop larger models that account for multiple IRS reflection scenarios.
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