Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = distributary cavity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 21431 KiB  
Article
Investigation of Flow Characteristics in Rotating Distributary and Confluence Cavities
by Kuan Zheng, Huan Ma, Hongchuang Sun and Jiang Qin
Energies 2025, 18(5), 1287; https://doi.org/10.3390/en18051287 - 6 Mar 2025
Cited by 1 | Viewed by 589
Abstract
Power generation is an important part of air vehicle energy management when developing long-endurance and reusable hypersonic aircraft. In order to utilize an air turbine power generation system on board, fuel-based rotating cooling has been researched to cool the turbine’s rotor blades. For [...] Read more.
Power generation is an important part of air vehicle energy management when developing long-endurance and reusable hypersonic aircraft. In order to utilize an air turbine power generation system on board, fuel-based rotating cooling has been researched to cool the turbine’s rotor blades. For fuel-cooling air turbines, each blade corresponds to a separate cooling channel. All the separate cooling channels cross together and form a distributary cavity and a confluence cavity in the center of the disk. In order to determine the flow characteristics in the distributary and confluence cavities, computational fluid dynamics (CFD) simulations using the shear–stress–transport turbulence model were carried out under the conditions of different rotating speeds and different mass flow rates. The results showed great differences between non-rotating flow and rotating flow conditions in the distributary and confluence cavities. The flow in the distributary and confluence cavities has rotational velocity, with obvious layering distribution regularity. Moreover, a high-speed rotational flow surface is formed in the confluence cavity of the original structure, due to the combined functions of centrifugal force, inertia, and the Coriolis force. Great pressure loss occurs when fluid passes through the high-speed rotational flow surface. This pressure loss increases with the increase in rotating speed and mass flow rate. Finally, four structures were compared, and an optimal structure with a separated outlet channel was identified as the best structure to eliminate this great pressure loss. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

Back to TopTop