Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = displaced left-turn design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5116 KiB  
Article
Transverse Movement Kinetics of a Unit for Inter-Row Crops—Case Study: Cultivator Unit
by Pavol Findura, Volodymyr Nadykto, Volodymyr Kyurchev and Łukasz Gierz
Appl. Sci. 2024, 14(2), 580; https://doi.org/10.3390/app14020580 - 9 Jan 2024
Cited by 1 | Viewed by 1409
Abstract
Due to the negative impact of chemical inter-row weed control on the environment, mechanical weed control is increasingly used in practice. Machine-tractor units (MTU) are used with the row cultivator’s rear and frontal central position for its implementation. We have designed a unit [...] Read more.
Due to the negative impact of chemical inter-row weed control on the environment, mechanical weed control is increasingly used in practice. Machine-tractor units (MTU) are used with the row cultivator’s rear and frontal central position for its implementation. We have designed a unit in which side cultivators are used along with the central one. This paper considers the transverse movement kinematics of such an MTU’s outside right and left cultivators’ working devices in the horizontal plane. The present emulation of side machines is made by changing the longitudinal coordinate of their location relative to the tractor’s front and rear axles. Calculations have established that the frontal cultivator responds more intensively to the control action by changing the turning angle of the tractor’s steering wheels. However, if the value of this parameter is less than 2.75°, a rear-mounted cultivator is preferred, because in this case, the values of lateral deviations for the external, left, and right working device are smaller. When the turning angle of tractor wheels is from 1° to 3° (typical for MTU row work), a threefold increase in the working width of the cultivator causes a slight antiphase deviation in its external working devices (an increase or decrease in the amplitude of these deviations does not exceed 4%). The model that we have developed allows us to select the values of the MTU design parameters for which the lateral displacement will be very small (close to zero). As the turning angle of the tractor wheels increases to 3°, the external left and right working devices of the cultivators react inversely. This means that in the case of the rear machine, the values of lateral displacements increase, while in the case of the front machine, they decrease. At a turning angle of the tires of the tractor wheels close to 2.5°, the lateral displacements for the rear and front machines are the same. Full article
Show Figures

Figure 1

27 pages, 12735 KiB  
Article
Evaluation and Analysis of CFI Schemes with Different Length of Displaced Left-Turn Lanes with Entropy Method
by Binghong Pan, Shasha Luo, Jinfeng Ying, Yang Shao, Shangru Liu, Xiang Li and Jiaqi Lei
Sustainability 2021, 13(12), 6917; https://doi.org/10.3390/su13126917 - 19 Jun 2021
Cited by 11 | Viewed by 2666
Abstract
As an unconventional design to alleviate the conflict between left-turn and through vehicles, Continuous Flow Intersection (CFI) has obvious advantages in improving the sustainability of roadway. So far, the design manuals and guidelines for CFI are not enough sufficient, especially for the displaced [...] Read more.
As an unconventional design to alleviate the conflict between left-turn and through vehicles, Continuous Flow Intersection (CFI) has obvious advantages in improving the sustainability of roadway. So far, the design manuals and guidelines for CFI are not enough sufficient, especially for the displaced left-turn lane length of CFI. And the results of existing research studies are not operational, making it difficult to put CFI into application. To address this issue, this paper presents a methodological procedure for determination and evaluation of displaced left-turn lane length based on the entropy method considering multiple performance measures for sustainable transportation, including traffic efficiency index, environment effect index and fuel consumption. VISSIM and the surrogate safety assessment model (SSAM) were used to simulate the operational and safety performance of CFI. The multi-attribute decision-making method (MADM) based on an entropy method was adopted to determine the suitability of the CFI schemes under different traffic demand patterns. Finally, the procedure was applied to a typical congested intersection of the arterial road with heavy traffic volume and high left-turn ratio in Xi’an, China, the results showed the methodological procedure is reasonable and practical. According to the results, for the studied intersection, when the Volume-to-Capacity ratio (V/C) in the westbound and eastbound lanes is less than 0.5, the length of the displaced left-turn lanes can be selected in the range of 80 to 170 m. Otherwise, other solutions should be considered to improve the traffic efficiency. The simulation results of the case showed CFI can significantly improve the traffic efficiency. In the best case, compared with the conventional intersection, the number of vehicles increases by 13%, delay, travel time, number of stops, CO emission, and fuel consumption decrease by 41%, 29%, 25%, 17%, and 17%, respectively. Full article
(This article belongs to the Special Issue Green Roadways and Management Sustainability)
Show Figures

Figure 1

16 pages, 5512 KiB  
Article
Statistical Analysis of Safety Performance of Displaced Left-Turn Intersections: Case Studies in San Marcos, Texas
by Wenrui Qu, Qiao Sun, Qun Zhao, Tao Tao and Yi Qi
Int. J. Environ. Res. Public Health 2020, 17(18), 6446; https://doi.org/10.3390/ijerph17186446 - 4 Sep 2020
Cited by 11 | Viewed by 5965
Abstract
Displaced left-turn (DLT) intersections are designed to increase the mobility of vehicles by relocating the left-turn lane (lanes) to the far-left side of the road upstream of the main signalized intersection. Since DLT is a relatively new design and very limited crash data [...] Read more.
Displaced left-turn (DLT) intersections are designed to increase the mobility of vehicles by relocating the left-turn lane (lanes) to the far-left side of the road upstream of the main signalized intersection. Since DLT is a relatively new design and very limited crash data are available, previous studies have focused mainly on the analysis of its operational performance rather than its safety performance. To fill this gap, in this study, we investigated the safety performance of two DLT intersections located in San Marcos, Texas. Crash data from 2011 to April 2018 were extracted from the TxDOT Crash Record Information System (CRIS). These crash data were analyzed using two different approaches, i.e., statistical analysis and collision diagram-based analysis. The results of this study indicated that DLT did not increase the overall crash frequencies at the studied intersections. Traffic crashes related to left turns and right turns were reduced significantly by DLT. Meanwhile, it also caused safety issues related to traffic signage, traffic signal, geometric design, and access management at DLT intersections. Thus, in the implementation of DLT intersections, traffic engineers need to carefully consider different aspects of the DLT intersection design, including access management, traffic signal coordination, and driver acceptance. As a result of these analyses, recommendations were provided for the safe implementation of the DLT design in the future. Full article
(This article belongs to the Section Industrial Ecology)
Show Figures

Figure 1

19 pages, 2974 KiB  
Article
Simulating Arbitrary Electrode Reversals in Standard 12-Lead ECG
by Vessela Krasteva, Irena Jekova and Ramun Schmid
Sensors 2019, 19(13), 2920; https://doi.org/10.3390/s19132920 - 1 Jul 2019
Cited by 11 | Viewed by 12435
Abstract
Electrode reversal errors in standard 12-lead electrocardiograms (ECG) can produce significant ECG changes and, in turn, misleading diagnoses. Their detection is important but mostly limited to the design of criteria using ECG databases with simulated reversals, without Wilson’s central terminal (WCT) potential change. [...] Read more.
Electrode reversal errors in standard 12-lead electrocardiograms (ECG) can produce significant ECG changes and, in turn, misleading diagnoses. Their detection is important but mostly limited to the design of criteria using ECG databases with simulated reversals, without Wilson’s central terminal (WCT) potential change. This is, to the best of our knowledge, the first study that presents an algebraic transformation for simulation of all possible ECG cable reversals, including those with displaced WCT, where most of the leads appear with distorted morphology. The simulation model of ECG electrode swaps and the resultant WCT potential change is derived in the standard 12-lead ECG setup. The transformation formulas are theoretically compared to known limb lead reversals and experimentally proven for unknown limb–chest electrode swaps using a 12-lead ECG database from 25 healthy volunteers (recordings without electrode swaps and with 5 unicolor pairs swaps, including red (right arm—C1), yellow (left arm—C2), green (left leg (LL) —C3), black (right leg (RL)—C5), all unicolor pairs). Two applications of the transformation are shown to be feasible: ‘Forward’ (simulation of reordered leads from correct leads) and ‘Inverse’ (reconstruction of correct leads from an ECG recorded with known electrode reversals). Deficiencies are found only when the ground RL electrode is swapped as this case requires guessing the unknown RL electrode potential. We suggest assuming that potential to be equal to that of the LL electrode. The ‘Forward’ transformation is important for comprehensive training platforms of humans and machines to reliably recognize simulated electrode swaps using the available resources of correctly recorded ECG databases. The ‘Inverse’ transformation can save time and costs for repeated ECG recordings by reconstructing the correct lead set if a lead swap is detected after the end of the recording. In cases when the electrode reversal is unknown but a prior correct ECG recording of the same patient is available, the ‘Inverse’ transformation is tested to detect the exact swapping of the electrodes with an accuracy of (96% to 100%). Full article
(This article belongs to the Special Issue Smart Sensors for Healthcare and Medical Applications)
Show Figures

Figure 1

Back to TopTop