Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = discrete Σ-Δ modulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1024 KiB  
Article
Nonlinear Dynamical Model and Analysis of Emotional Propagation Based on Caputo Derivative
by Liang Hong and Lipu Zhang
Mathematics 2025, 13(13), 2044; https://doi.org/10.3390/math13132044 - 20 Jun 2025
Viewed by 295
Abstract
Conventional integer-order models fail to adequately capture non-local memory effects and constrained nonlinear interactions in emotional dynamics. To address these limitations, we propose a coupled framework that integrates Caputo fractional derivatives with hyperbolic tangent–based interaction functions. The fractional-order term quantifies power-law memory decay [...] Read more.
Conventional integer-order models fail to adequately capture non-local memory effects and constrained nonlinear interactions in emotional dynamics. To address these limitations, we propose a coupled framework that integrates Caputo fractional derivatives with hyperbolic tangent–based interaction functions. The fractional-order term quantifies power-law memory decay in affective states, while the nonlinear component regulates connection strength through emotional difference thresholds. Mathematical analysis establishes the existence and uniqueness of solutions with continuous dependence on initial conditions and proves the local asymptotic stability of network equilibria (Wij*=1δsech2(EiEj), e.g., W*1.40 under typical parameters η=0.5, δ=0.3). We further derive closed-form expressions for the steady-state variance under stochastic perturbations (Var(Wij)=σζ22ηδ) and demonstrate a less than 6% deviation between simulated and theoretical values when σζ=0.1. Numerical experiments using the Euler–Maruyama method validate the convergence of connection weights toward the predicted equilibrium, reveal Gaussian features in the stationary distributions, and confirm power-law scaling between noise intensity and variance. The numerical accuracy of the fractional system is further verified through L1 discretization, with observed error convergence consistent with theoretical expectations for μ=0.5. This framework advances the mechanistic understanding of co-evolutionary dynamics in emotion-modulated social networks, supporting applications in clinical intervention design, collective sentiment modeling, and psychophysiological coupling research. Full article
(This article belongs to the Special Issue Research on Delay Differential Equations and Their Applications)
Show Figures

Figure 1

18 pages, 2551 KiB  
Article
High-Precision Digital Clock Steering Method Based on Discrete Σ-Δ Modulation for GNSS
by Mingkai Liu, Zhijun Meng, Enqi Yan, Suyang Liu, Yinhong Lv, Xiye Guo and Jun Yang
Remote Sens. 2024, 16(15), 2794; https://doi.org/10.3390/rs16152794 - 30 Jul 2024
Viewed by 1249
Abstract
A high-precision time reference is fundamental to the positioning, navigation, and timing (PNT) of global navigation satellite systems (GNSS). The precision of clock steering determines the accuracy of practical applications that rely on the time–frequency reference. With the invention of direct digital synthesizer [...] Read more.
A high-precision time reference is fundamental to the positioning, navigation, and timing (PNT) of global navigation satellite systems (GNSS). The precision of clock steering determines the accuracy of practical applications that rely on the time–frequency reference. With the invention of direct digital synthesizer (DDS) technology, digital clock steering (DCS) has gradually become a mainstream technology. However, the key factor limiting DCS accuracy is the system quantization noise, which leads to a low frequency and phase adjustment accuracy. Here we propose a DCS method based on Σ-Δ modulation to address the issue of low resolution of DAC through shaping the quantization noise. A simulated GNSS time–frequency reference system experimental platform is constructed to validate the effectiveness of the proposed method. The experimental results demonstrate that this method achieves a phase adjustment accuracy of 0.48 ps and a frequency adjustment accuracy better than 0.48 pHz, which is two orders of magnitude higher than that of existing GNSS time–frequency reference systems. Thus, the proposed method offers a significant improvement in time–frequency reference systems, leading to better performance, reliability, and accuracy in a wide range of practical applications. Full article
(This article belongs to the Special Issue GNSS Positioning, Navigation, and TimingPresent and Beyond)
Show Figures

Figure 1

15 pages, 1709 KiB  
Article
4th Order LC-Based Sigma Delta Modulators
by Evelyn Cristina de Oliveira Lima, Antonio Wallace Antunes Soares and Diomadson Rodrigues Belfort
Sensors 2022, 22(22), 8915; https://doi.org/10.3390/s22228915 - 18 Nov 2022
Viewed by 1943
Abstract
Due to the characteristic of narrow band conversion around a central radio frequency, the Sigma Delta Modulator (ΣΔM) based on LC resonators is a suitable option for use in Software-Defined Radio (SDR). However, some aspects of the topologies described in [...] Read more.
Due to the characteristic of narrow band conversion around a central radio frequency, the Sigma Delta Modulator (ΣΔM) based on LC resonators is a suitable option for use in Software-Defined Radio (SDR). However, some aspects of the topologies described in the state-of-the-art, such as noise and nonlinear sources, affect the performance of ΣΔM. This paper presents the design methodology of three high-order LC-Based single-block Sigma Delta Modulators. The method is based on the equivalence between continuous time and discrete time loop gain using a Finite Impulse Response Digital-to-Analog Converter (FIRDAC) through a numerical approach to defining the coefficients. The continuous bandpass LC ΣΔM simulations are performed at a center frequency of 432 MHz and a sampling frequency of 1.72 GHz. To the proposed modulators a maximum Signal-to-Noise Ratio (SNR) of 51.39 dB, 48.48 dB, and 46.50 dB in a 4 MHz bandwidth was achieved to respectively 4th Order Gm-LC ΣΔM, 4th Order Magnetically Coupled ΣΔM and 4th Order Capacitively Coupled ΣΔM. Full article
(This article belongs to the Special Issue RF and IoT Sensors: Design, Optimization and Applications)
Show Figures

Figure 1

17 pages, 16571 KiB  
Article
A Straightforward Approach for Synthesizing Electromechanical Sigma-Delta MEMS Accelerometers
by Dongliang Chen, Liang Yin, Qiang Fu, Wenbo Zhang, Yihang Wang, Guorui Zhang, Yufeng Zhang and Xiaowei Liu
Sensors 2020, 20(1), 91; https://doi.org/10.3390/s20010091 - 22 Dec 2019
Cited by 4 | Viewed by 3321
Abstract
The EM- Σ Δ (electromechanical sigma-delta) approach is a concise and efficient way to realize the digital interface for micro-electromechanical systems (MEMS) accelerometers. However, including a fixed MEMS element makes the synthesizing of the EM- Σ Δ loop an intricate problem. The loop [...] Read more.
The EM- Σ Δ (electromechanical sigma-delta) approach is a concise and efficient way to realize the digital interface for micro-electromechanical systems (MEMS) accelerometers. However, including a fixed MEMS element makes the synthesizing of the EM- Σ Δ loop an intricate problem. The loop parameters of EM- Σ Δ can not be directly mapped from existing electrical Σ Δ modulator, and the synthesizing problem relies an experience-dependent trail-and-error procedure. In this paper, we provide a new point of view to consider the EM- Σ Δ loop. The EM- Σ Δ loop is analyzed in detail from aspects of the signal loop, displacement modulation path and digital quantization loop. By taking a separate consideration of the signal loop and quantization noise loop, the design strategy is made clear and straightforward. On this basis, a discrete-time PID (proportional integral differential) loop compensator is introduced which enhances the in-band loop gain and suppresses the displacement modulation path, and hence, achieves better performance in system linearity and stability. A fifth-order EM- Σ Δ accelerometer system was designed and fabricated using 0.35 μ m CMOS-BCD technology. Based on proposed architecture and synthesizing procedure, the design effort was saved, and the in-band performance, linearity and stability were improved. A noise floor of 1 μ g / Hz , with a bandwidth 1 kHz and a dynamic range of 140 dB was achieved. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop