Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = disc and beam shape specimens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6724 KiB  
Article
Comparison of Testing Method Effects on Cracking Resistance of Asphalt Concrete Mixtures
by Dayong Yang, Hamid Reza Karimi and Mohammad Reza Mohammad Aliha
Appl. Sci. 2021, 11(11), 5094; https://doi.org/10.3390/app11115094 - 31 May 2021
Cited by 67 | Viewed by 5231
Abstract
As an inherent characteristic of materials, the fracture toughness is an important parameter to study the cracking behavior of asphalt concrete mixtures. Although material compositions and environmental conditions have a significant effect on the fracture toughness, for a certain material and testing environment, [...] Read more.
As an inherent characteristic of materials, the fracture toughness is an important parameter to study the cracking behavior of asphalt concrete mixtures. Although material compositions and environmental conditions have a significant effect on the fracture toughness, for a certain material and testing environment, the test condition including the specimen configuration and loading type may also affect the obtained fracture toughness. In this paper, the effect of specimen configuration and applied loading type on the measured pure mode-I fracture toughness (KIc) is investigated. In order to achieve this purpose, using a typical asphalt mixture, four different test specimens including Semi-Circular Bend (SCB), Edge Notch Disc Bend (ENDB), Single Edge Notch Beam (SENB) and Edge Notch Diametral Compression (ENDC) disc are tested under pure mode I. The mentioned specimens have different shapes (i.e., full disc, semi-disc and rectangular beam) and are loaded either with symmetric three-point bending or diametral compressive force. The tests were performed at two low temperatures (−5 °C and −25 °C) and it was observed that the critical mode-I fracture toughness (KIc) was changed slightly (up to 10%) by changing the shape of the test specimen (i.e., disc and beam). This reveals that the fracture toughness is not significantly dependent on the shape of the test specimen. However, the type of applied loading has a significant influence on the determined mode I fracture toughness such that the fracture toughness determined by the disc shape specimen loaded by diametral compression (i.e., ENDC) is about 25% less than the KIc value with the same geometry but loaded with the three-point bending (i.e., ENDB) specimen. In addition, the fracture toughness values of all tested samples were increased linearly by decreasing the test temperature such that the fracture toughness ratio (KIc (@−25 °C)/KIc (@−5 °C)) was nearly constant for the ENDB, ENDC, SCB and SENB samples. Full article
(This article belongs to the Special Issue Asphalt Materials II)
Show Figures

Figure 1

Back to TopTop