Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = disaster monitoring constellation (DMC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 5629 KiB  
Review
Spaceborne GNSS Reflectometry for Vegetation and Inland Water Monitoring: Progress, Challenges, Opportunities, and Potential
by Jiaxi Xie, Jinwei Bu, Huan Li and Qiulan Wang
Remote Sens. 2025, 17(7), 1199; https://doi.org/10.3390/rs17071199 - 27 Mar 2025
Cited by 2 | Viewed by 1481
Abstract
Global navigation satellite system reflectometry (GNSS-R) uses the reflection characteristics of navigation satellite signals reflected from the earth’s surface to provide an innovative tool for remote sensing, especially for monitoring surface and atmospheric environmental variables, such as wind speed, soil moisture, vegetation, and [...] Read more.
Global navigation satellite system reflectometry (GNSS-R) uses the reflection characteristics of navigation satellite signals reflected from the earth’s surface to provide an innovative tool for remote sensing, especially for monitoring surface and atmospheric environmental variables, such as wind speed, soil moisture, vegetation, and sea ice parameters. This paper focuses on the current application and future potential of spaceborne GNSS-R in vegetation remote sensing and the retrieval of inland water environmental and physical parameters. This paper reviews the technical progress of GNSS-R in detail, from early feasibility studies to multiple application examples at this stage, from the United Kingdom Disaster Monitoring Constellation (UK-DMC) satellite in 2003 to other recent GNSS-R missions. These cases demonstrate the unique advantages of GNSS-R in terms of global coverage, low cost, and real-time monitoring. This paper explores the application of GNSS-R technology in vegetation parameters and inland water monitoring, especially its potential in vegetation parameters and surface water monitoring applications. The article also mentioned that the accuracy and efficiency of parameter retrieval can be significantly improved by improving models and algorithms, such as using neural networks and data fusion technology. Finally, the article points out the future direction of spaceborne GNSS-R technology in vegetation remote sensing and the retrieval of inland water environment and physical parameters, including expanding its application areas to a broader range of environmental monitoring and resource management. It emphasized its essential role in monitoring the global ecosystem and monitoring water resources. Full article
Show Figures

Figure 1

21 pages, 10718 KiB  
Article
Mapping Agricultural Land in Afghanistan’s Opium Provinces Using a Generalised Deep Learning Model and Medium Resolution Satellite Imagery
by Daniel M. Simms, Alex M. Hamer, Irmgard Zeiler, Lorenzo Vita and Toby W. Waine
Remote Sens. 2023, 15(19), 4714; https://doi.org/10.3390/rs15194714 - 26 Sep 2023
Cited by 2 | Viewed by 3147
Abstract
Understanding the relationship between land use and opium production is critical for monitoring the dynamics of poppy cultivation and developing an effective counter narcotics policy in Afghanistan. However, mapping agricultural land accurately and rapidly is challenging, as current methods require resource-intensive and time [...] Read more.
Understanding the relationship between land use and opium production is critical for monitoring the dynamics of poppy cultivation and developing an effective counter narcotics policy in Afghanistan. However, mapping agricultural land accurately and rapidly is challenging, as current methods require resource-intensive and time consuming manual image-interpretation. Deep convolutional neural nets have been shown to greatly reduce the manual effort in mapping agriculture from satellite imagery but require large amounts of densely labelled training data for model training. Here we develop a generalised model using past images and labels from different medium resolution satellite sensors for fully automatic agricultural land classification using the latest medium resolution satellite imagery. The model (FCN-8) is first trained on Disaster Monitoring Constellation (DMC) satellite images from 2007 to 2009. The effect of shape, texture and spectral features on model performance are investigated along with normalisation in order to standardise input medium resolution imagery from DMC, Landsat-5, Landsat-8, and Sentinel-2 for transfer learning between sensors and across years. Textural features make the highest contribution to overall accuracy (∼73%) while the effect of shape is minimal. The model accuracy on new images, with no additional training, is comparable to visual image interpretation (overall > 95%, user accuracy > 91%, producer accuracy > 85%, and frequency weighted intersection over union > 67%). The model is robust and was used to map agriculture from archive images (1990) and can be used in other areas with similar landscapes. The model can be updated by fine tuning using smaller, sparsely labelled datasets in the future. The generalised model was used to map the change in agricultural area in Helmand Province, showing the expansion of agricultural land into former desert areas. Training generalised deep learning models using data from both new and long-term EO programmes, with little or no requirement for fine tuning, is an exciting opportunity for automating image classification across datasets and through time that can improve our understanding of the environment. Full article
Show Figures

Figure 1

19 pages, 7953 KiB  
Article
Crop Phenology Modelling Using Proximal and Satellite Sensor Data
by Anne Gobin, Abdoul-Hamid Mohamed Sallah, Yannick Curnel, Cindy Delvoye, Marie Weiss, Joost Wellens, Isabelle Piccard, Viviane Planchon, Bernard Tychon, Jean-Pierre Goffart and Pierre Defourny
Remote Sens. 2023, 15(8), 2090; https://doi.org/10.3390/rs15082090 - 15 Apr 2023
Cited by 17 | Viewed by 4689
Abstract
Understanding crop phenology is crucial for predicting crop yields and identifying potential risks to food security. The objective was to investigate the effectiveness of satellite sensor data, compared to field observations and proximal sensing, in detecting crop phenological stages. Time series data from [...] Read more.
Understanding crop phenology is crucial for predicting crop yields and identifying potential risks to food security. The objective was to investigate the effectiveness of satellite sensor data, compared to field observations and proximal sensing, in detecting crop phenological stages. Time series data from 122 winter wheat, 99 silage maize, and 77 late potato fields were analyzed during 2015–2017. The spectral signals derived from Digital Hemispherical Photographs (DHP), Disaster Monitoring Constellation (DMC), and Sentinel-2 (S2) were crop-specific and sensor-independent. Models fitted to sensor-derived fAPAR (fraction of absorbed photosynthetically active radiation) demonstrated a higher goodness of fit as compared to fCover (fraction of vegetation cover), with the best model fits obtained for maize, followed by wheat and potato. S2-derived fAPAR showed decreasing variability as the growing season progressed. The use of a double sigmoid model fit allowed defining inflection points corresponding to stem elongation (upward sigmoid) and senescence (downward sigmoid), while the upward endpoint corresponded to canopy closure and the maximum values to flowering and fruit development. Furthermore, increasing the frequency of sensor revisits is beneficial for detecting short-duration crop phenological stages. The results have implications for data assimilation to improve crop yield forecasting and agri-environmental modeling. Full article
Show Figures

Graphical abstract

17 pages, 1890 KiB  
Article
Optical Medium Spatial Resolution Satellite Constellation Data for Monitoring Woodland in the UK
by Ebenezer Y. Ogunbadewa, Richard P. Armitage and F. Mark Danson
Forests 2014, 5(7), 1798-1814; https://doi.org/10.3390/f5071798 - 23 Jul 2014
Cited by 1 | Viewed by 6649
Abstract
The aim of this study was to test the potential of a constellation of remote sensing satellites, the Disaster Monitoring Constellation (DMC), for retrieving a temporal record of forest leaf area index (LAI) in the United Kingdom (U.K.). Ground-based LAI measurements were made [...] Read more.
The aim of this study was to test the potential of a constellation of remote sensing satellites, the Disaster Monitoring Constellation (DMC), for retrieving a temporal record of forest leaf area index (LAI) in the United Kingdom (U.K.). Ground-based LAI measurements were made over a 12-month period in broadleaf woodland at Risley Moss Nature Reserve, Lancashire, U.K. The ground-based LAI varied between zero in January to a maximum of 4.5 in July. Nine DMC images, combining data from UK-DMC and NigeriaSat-1, were acquired, and all images were cross-calibrated and atmospherically corrected. The spectral reflectance of the test site was extracted, and a range of vegetation indices were then computed and correlated with the ground measurements of LAI. The soil adjusted vegetation index (SAVI) had the strongest correlation, and this was used to derive independent estimates of LAI using the “leave-one-out” method. The root mean square error of the LAI estimates was 0.47, which was close to that calculated for the ground-measured LAI. This study shows, for the first time, that data from a constellation of high temporal, medium spatial resolution optical satellite sensors may be used to map seasonal variation in woodland canopy leaf area index (LAI) in cloud-prone areas, like the U.K. Full article
(This article belongs to the Special Issue Applications of Remote Sensing to Forestry)
Show Figures

Figure 1

20 pages, 1049 KiB  
Article
Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site
by Nischal Mishra, Dennis Helder, Amit Angal, Jason Choi and Xiaoxiong Xiong
Remote Sens. 2014, 6(2), 1327-1346; https://doi.org/10.3390/rs6021327 - 12 Feb 2014
Cited by 87 | Viewed by 11826
Abstract
The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55°, +23.39°) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as [...] Read more.
The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55°, +23.39°) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study. Full article
Show Figures

15 pages, 1619 KiB  
Article
Geo-Correction of High-Resolution Imagery Using Fast Template Matching on a GPU in Emergency Mapping Contexts
by Guido Lemoine and Martina Giovalli
Remote Sens. 2013, 5(9), 4488-4502; https://doi.org/10.3390/rs5094488 - 12 Sep 2013
Cited by 10 | Viewed by 9714
Abstract
The increasing availability of satellite imagery acquired by existing and new sensors allows a wide variety of new applications that depend on the use of diverse spectral and spatial resolution data sets. One of the pre-conditions for the use of hybrid image data [...] Read more.
The increasing availability of satellite imagery acquired by existing and new sensors allows a wide variety of new applications that depend on the use of diverse spectral and spatial resolution data sets. One of the pre-conditions for the use of hybrid image data sets is a consistent geo-correction capacity. We demonstrate how a novel fast template matching approach implemented on a graphics processing unit (GPU) allows us to accurately and rapidly geo-correct imagery in an automated way. The key difference with existing geo-correction approaches, which do not use a GPU, is the possibility to match large source image segments (8,192 by 8,192 pixels) with relatively large templates (512 by 512 pixels) significantly faster. Our approach is sufficiently robust to allow for the use of various reference data sources. The need for accelerated processing is relevant in our application context, which relates to mapping activities in the European Copernicus emergency management service. Our new method is demonstrated over an area northwest of Valencia (Spain) for a large forest fire event in July 2012. We use the Disaster Monitoring Constellation’s (DMC) DEIMOS-1 and RapidEye imagery for the delineation of burnt scar extent. Automated geo-correction of each full resolution image set takes approximately one minute. The reference templates are taken from the TerraColor data set and the Spanish national ortho-imagery database, through the use of dedicated web map services. Geo-correction results are compared to the vector sets derived in the Copernicus emergency service activation request. Full article
(This article belongs to the Special Issue High Performance Computing in Remote Sensing)
Show Figures

Back to TopTop