Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = dimetacrylate resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4810 KiB  
Article
Miscibility and Optimization of the Liquid Rubber Content in the Resins of Light-Cured Dental Composites
by Krzysztof Pałka and Monika Sowa
Materials 2023, 16(1), 87; https://doi.org/10.3390/ma16010087 - 22 Dec 2022
Viewed by 1765
Abstract
Fracture toughness is one of the main factors influencing the durability of light-cured composites used for dental restorations and fillings. One of the methods of increasing the fracture toughness is the modification of the matrix with liquid acrylonitrile-free liquid rubber. This study aimed [...] Read more.
Fracture toughness is one of the main factors influencing the durability of light-cured composites used for dental restorations and fillings. One of the methods of increasing the fracture toughness is the modification of the matrix with liquid acrylonitrile-free liquid rubber. This study aimed to assess the miscibility of acrylonitrile-free liquid rubber with a blend of resins and their stability over time, and to determine the optimal amount of liquid rubber (LR) in the blend due to mechanical properties. Two blends of dimethacrylate resins were used: resin “F” composed of BisGMA (60 wt.%), TEGDMA (20 wt.%), BisEMA (10 wt.%) and UDMA (10 wt.%), and “C” resin containing BisGMA (40 wt.%), TEGDMA (40 wt.%), BisEMA (10 wt.%) and UDMA (10 wt.%). The modifier Hypro® 2000X168LC VTB liquid rubber was used in at 1%, 2%, 3%, 4%, 5%, 10%, 15% and 20% by weight in the resin blend. The miscibility was assessed by microscopy. The fracture toughness, flexural strength and Young’s modulus were determined in the bending test. The results showed that the solubility of the liquid rubber depends on the ratio of BisGMA/TEGDMA in the resins. In resins with 40 wt.% TEGDMA, the LR solubility was as high as 5%, while resins with 20 wt.% TEGDMA, the liquid rubber did not dissolve. The LR-resin mixtures showed good time stability, and no changes in the size or morphology of the rubber domains were found after 24 h of mixing. The maximum fracture toughness (2.46 MPa m1/2) was obtained for 5 wt.% LR in resin F and for 15 wt.% LR in resin C (2.53 MPa m1/2). The modification with liquid rubber resulted in an exponential reduction in both flexural strength and Young’s modulus. The analysis of the results of the mechanical tests allowed us to determine the optimal amount of LR for both resins. For resin F it was 5.4 wt.%, and for resin C it was 8.3 wt.%. It can be stated that the optimal amount of liquid rubber increases with its solubility in the resin. Full article
(This article belongs to the Special Issue Biomaterials and Mechanics in Dentistry)
Show Figures

Figure 1

17 pages, 1890 KiB  
Article
Optimization of Plasmonic Gold Nanoparticle Concentration in Green LED Light Active Dental Photopolymer
by Katalin Bukovinszky, Melinda Szalóki, István Csarnovics, Attila Bonyár, Péter Petrik, Benjámin Kalas, Lajos Daróczi, Sándor Kéki, Sándor Kökényesi and Csaba Hegedűs
Polymers 2021, 13(2), 275; https://doi.org/10.3390/polym13020275 - 15 Jan 2021
Cited by 19 | Viewed by 3196
Abstract
Gold nanoparticles (AuNPs) display surface plasmon resonance (SPR) as a result of their irradiation at a targeted light frequency. SPR also results in heat production that increases the temperature of the surrounding environment, affecting polymerization. The aim was to investigate the SPR effect [...] Read more.
Gold nanoparticles (AuNPs) display surface plasmon resonance (SPR) as a result of their irradiation at a targeted light frequency. SPR also results in heat production that increases the temperature of the surrounding environment, affecting polymerization. The aim was to investigate the SPR effect of AuNPs on a dimethacrylate-based photopolymer system. The tested composites were designed to overlap the illumination required for the polymerization and the plasmon effect. The 5 nm-sized dodecanethiol capped AuNPs were applied in different concentrations in the matrix that were irradiated with green light (λ = 532 nm), where the Irgacure 784 photoinitiator also absorbs the light. The plasmonic effect was investigated for the refractive index change by surface plasmon resonance imaging (SPRi) supplemented by ellipsometry. Moreover, optical transmission and transmission electron micrographs (TEM), diametral tensile stress (DTS), and confocal Raman spectroscopy was performed to determine the degree of conversion (DC) at 1.0, 1.4, and 2.0 mW/cm2 light intensities. It was found that the optimal conditions were at 0.0208 wt% AuNPs concentration and 1.4 mW/cm2 light intensity at which the refractive index change, DTS, and DC data were all maximal. The study confirmed that AuNPs are applicable to improve the polymerization efficiency of dental composite resin. Full article
(This article belongs to the Special Issue Metal Nanoparticles–Polymers Hybrid Materials II)
Show Figures

Graphical abstract

13 pages, 2231 KiB  
Article
Myristyltrimethylammonium Bromide (MYTAB) as a Cationic Surface Agent to Inhibit Streptococcus mutans Grown over Dental Resins: An In Vitro Study
by Paola Andrea Mena Silva, Isadora Martini Garcia, Julia Nunes, Fernanda Visioli, Vicente Castelo Branco Leitune, Mary Anne Melo and Fabrício Mezzomo Collares
J. Funct. Biomater. 2020, 11(1), 9; https://doi.org/10.3390/jfb11010009 - 15 Feb 2020
Cited by 20 | Viewed by 5235
Abstract
This in vitro study evaluated the effect of myristyltrimethylammonium bromide (MYTAB) on the physical, chemical, and biological properties of an experimental dental resin. The resin was formulated with dental dimetacrylate monomers and a photoinitiator/co-initiator system. MYTAB was added at 0.5 (G0.5%), [...] Read more.
This in vitro study evaluated the effect of myristyltrimethylammonium bromide (MYTAB) on the physical, chemical, and biological properties of an experimental dental resin. The resin was formulated with dental dimetacrylate monomers and a photoinitiator/co-initiator system. MYTAB was added at 0.5 (G0.5%), 1 (G1%), and 2 (G2%) wt %, and one group remained without MYTAB and was used as the control (GCtrl). The resins were analyzed for the polymerization kinetics, degree of conversion, ultimate tensile strength (UTS), antibacterial activity against Streptococcus mutans, and cytotoxicity against human keratinocytes. Changes in the polymerization kinetics profiling were observed, and the degree of conversion ranged from 57.36% (±2.50%) for G2% to 61.88% (±1.91%) for G0.5%, without a statistically significant difference among groups (p > 0.05). The UTS values ranged from 32.85 (±6.08) MPa for G0.5% to 35.12 (±5.74) MPa for GCtrl (p > 0.05). MYTAB groups showed antibacterial activity against biofilm formation from 0.5 wt % (p < 0.05) and against planktonic bacteria from 1 wt % (p < 0.05). The higher the MYTAB concentration, the higher the cytotoxic effect, without differences between GCtrl e G0.5% (p > 0.05). In conclusion, the addition of 0.5 wt % of MYTAB did not alter the physical and chemical properties of the dental resin and provided antibacterial activity without cytotoxic effect. Full article
(This article belongs to the Special Issue Bacterial Interactions with Dental and Medical Materials)
Show Figures

Figure 1

Back to TopTop