Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = digestomics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2549 KiB  
Article
Impact of Heat and Pressure Processing Treatments on the Digestibility of Peanut, Hazelnut, Pistachio and Cashew Allergens
by Claudia Arribas, Africa Sanchiz, Mercedes M. Pedrosa, Selene Perez-Garcia, Rosario Linacero and Carmen Cuadrado
Foods 2024, 13(22), 3549; https://doi.org/10.3390/foods13223549 - 7 Nov 2024
Cited by 2 | Viewed by 1747
Abstract
Food processing can alter protein biochemical properties, impacting immunoreactivity and allergenicity. A key feature of food allergens is their resistance to enzymatic digestion, particularly by pepsin and trypsin. This study compares the digestomes of raw and heat- and/or pressure-treated peanuts, hazelnuts, pistachios and [...] Read more.
Food processing can alter protein biochemical properties, impacting immunoreactivity and allergenicity. A key feature of food allergens is their resistance to enzymatic digestion, particularly by pepsin and trypsin. This study compares the digestomes of raw and heat- and/or pressure-treated peanuts, hazelnuts, pistachios and cashews using the INFOGEST harmonized digestion protocol and analyzing their IgE-binding capacity through in vitro methods. Protein patterns from controls and digestomes were resolved by SDS-PAGE and tested with sera from allergic patients, confirmed by competitive ELISA for hazelnuts and peanuts. The results indicate that processing methods differently affect the gastrointestinal (GI) digestion of these allergens. Simulated GI digestion caused a significant destruction of protein structures, reducing but not eliminating IgE reactivity for all four nuts. Boiling for 60 min did not change the SDS-PAGE profiles, but it did stimulate enzymatic activity, decreasing IgE binding capacity. In contrast, applying heat and pressure led to a nearly complete inhibition of allergenic potential during simulated digestion. These findings suggest that employing intense food processing techniques and investigating the gastrointestinal effects of highly allergenic nuts could be crucial steps toward developing new hypoallergenic formulations. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

22 pages, 3788 KiB  
Review
Termite Microbial Symbiosis as a Model for Innovative Design of Lignocellulosic Future Biorefinery: Current Paradigms and Future Perspectives
by Mudasir A. Dar, Rongrong Xie, Hossain M. Zabed, Shehbaz Ali, Daochen Zhu and Jianzhong Sun
Biomass 2024, 4(1), 180-201; https://doi.org/10.3390/biomass4010009 - 1 Mar 2024
Cited by 14 | Viewed by 4079
Abstract
The hunt for renewable and alternative fuels has driven research towards the biological conversion of lignocellulosic biomass (LCB) into biofuels, including bioethanol and biohydrogen. Among the natural biomass utilization systems (NBUS), termites represent a unique and easy-to-access model system to study host–microbe interactions [...] Read more.
The hunt for renewable and alternative fuels has driven research towards the biological conversion of lignocellulosic biomass (LCB) into biofuels, including bioethanol and biohydrogen. Among the natural biomass utilization systems (NBUS), termites represent a unique and easy-to-access model system to study host–microbe interactions towards lignocellulose bioconversion/valorization. Termites have gained significant interest due to their highly efficient lignocellulolytic systems. The wood-feeding termites apply a unique and stepwise process for the hydrolysis of lignin, hemicellulose, and cellulose via biocatalytic processes; therefore, mimicking their digestive metabolism and physiochemical gut environments might lay the foundation for an innovative design of nature-inspired biotechnology. This review highlights the gut system of termites, particularly the wood-feeding species, as a unique model for future biorefinery. The gut system of termites is a treasure-trove for prospecting novel microbial species, including protists, bacteria, and fungi, having higher biocatalytic efficiencies and biotechnological potentials. The significance of potential bacteria and fungi for harnessing the enzymes appropriate for lignocellulosic biorefinery is also discussed. Termite digestomes are rich sources of lignocellulases and related enzymes that could be utilized in various industrial processes and biomass-related applications. Consideration of the host and symbiont as a single functioning unit will be one of the most crucial strategies to expedite developments in termite-modeled biotechnology in the future. Full article
(This article belongs to the Special Issue Innovative Systems for Biomass Crop Production and Use)
Show Figures

Figure 1

16 pages, 7604 KiB  
Article
Assessment of In Vitro Digestive Behavior of Lactic-Acid-Bacteria Fermented Soy Proteins: A Study Comparing Colloidal Solutions and Curds
by Yaqiong Wang, Yumeng Fu, Elham Azarpazhooh, Wei Li, Qi Liu and Xin Rui
Molecules 2022, 27(21), 7652; https://doi.org/10.3390/molecules27217652 - 7 Nov 2022
Cited by 8 | Viewed by 2471
Abstract
This study investigated the effect of lactic-acid-bacteria fermentation on the microstructure and gastrointestinal digestibility of soy proteins using a digestomics approach. Fermented soy protein isolates (FSPIs) under varied fermentation-terminal pH demonstrated a colloidal solution (FSPI-7.0/6.0) or yogurt-like curd (FSPI-5.0/4.0) state. Cryo-electron microscopy figures [...] Read more.
This study investigated the effect of lactic-acid-bacteria fermentation on the microstructure and gastrointestinal digestibility of soy proteins using a digestomics approach. Fermented soy protein isolates (FSPIs) under varied fermentation-terminal pH demonstrated a colloidal solution (FSPI-7.0/6.0) or yogurt-like curd (FSPI-5.0/4.0) state. Cryo-electron microscopy figures demonstrated the loosely stacked layer of FSPI-7.0/6.0 samples, whereas a denser gel network was observed for FSPI-5.0/4.0 samples. Molecular interactions shifted from dominant ionic bonds to hydrophobic forces and disulfide bonds. The gastric/intestinal digestion demonstrated that the curd samples afforded a significantly low particle size and high-soluble protein and peptide contents in the medium and late digestive phases. A peptidomics study showed that the FSPI-6.0 digestate at early intestinal digestion had a high peptidome abundance, whereas FSPI curd digestates (FSPI-5.0/4.0) elicited a postponed but more extensive promotion during medium and late digestion. Glycinin G2/G4 and β-conglycinin α/α’ subunits were the major subunits promoted by FSPI-curds. The spatial structures of glycinin G2 and β-conglycinin α subunits demonstrated variations located in seven regions. Glycinin G2 region 6 (A349–K356) and β-conglycinin α subunit region 7 (E556–E575), which were located at the interior of the 3D structure, were the key regions contributing to discrepancies at the late stage. Full article
Show Figures

Figure 1

13 pages, 2406 KiB  
Article
Digestomics of Cow’s Milk: Short Digestion-Resistant Peptides of Casein Form Functional Complexes by Aggregation
by Jelena Radosavljević, Danijela Apostolović, Jelena Mihailović, Marina Atanasković-Marković, Lidija Burazer, Marianne van Hage and Tanja Ćirković Veličković
Foods 2020, 9(11), 1576; https://doi.org/10.3390/foods9111576 - 30 Oct 2020
Cited by 15 | Viewed by 3559
Abstract
The aim of this study was to identify short digestion-resistant peptides (SDRPs) released by pepsin digestion of the whole cow’s milk and examine their IgE reactivity and allergenicity. Raw milk was subjected to simulated gastric digestion. SDRPs were fractionated from the digests and [...] Read more.
The aim of this study was to identify short digestion-resistant peptides (SDRPs) released by pepsin digestion of the whole cow’s milk and examine their IgE reactivity and allergenicity. Raw milk was subjected to simulated gastric digestion. SDRPs were fractionated from the digests and identified by MS. Milk SDRPs were evaluated for aggregability, propensity to compete for IgE binding with individual milk allergens, and ability to bind IgG4 from allergic and milk-tolerant individuals. The majority of milk SDRPs originated from caseins (97% of peptides) and overlapped with the known IgE epitopes of cow’s milk allergens. SDRPs competed with milk proteins for binding to human IgE and readily formed aggregates. The average peptide length was 10.6 ± 3.5 amino acids. The ability to provoke allergenic in vivo responses was confirmed by skin-prick testing (SPT) in five milk-allergic subjects. This was attributed to the peptide ability to aggregate into non-covalent complexes. SDRPs are able to induce response in SPT, but only in 50% of the sera SDRPs were able to inhibit IgG4 binding to caseins. Hence, SDRPs corresponding to the mainly continuous epitopes of milk proteins induce allergenic in vivo responses in milk-allergic subjects due to aggregation. Full article
Show Figures

Graphical abstract

18 pages, 5015 KiB  
Article
Thermal Processing of Peanut Grains Impairs Their Mimicked Gastrointestinal Digestion While Downstream Defatting Treatments Affect Digestomic Profiles
by Ivana Prodić, Katarina Smiljanić, Ana Simović, Jelena Radosavljević and Tanja Ćirković Veličković
Foods 2019, 8(10), 463; https://doi.org/10.3390/foods8100463 - 10 Oct 2019
Cited by 11 | Viewed by 4055
Abstract
Resistance to digestion by digestive proteases represents a critical property of many food allergens. Recently, a harmonized INFOGEST protocol was proposed for solid food digestion. The protocol proposes digestion conditions suitable for all kinds of solid and liquid foods. However, peanuts, as a [...] Read more.
Resistance to digestion by digestive proteases represents a critical property of many food allergens. Recently, a harmonized INFOGEST protocol was proposed for solid food digestion. The protocol proposes digestion conditions suitable for all kinds of solid and liquid foods. However, peanuts, as a lipid-rich food, represent a challenge for downstream analyses of the digestome. This is particularly reflected in the methodological difficulties in analyzing proteins and peptides in the presence of lipids. Therefore, the removal of the lipids seems to be a prerequisite for the downstream analysis of digestomes of lipid-rich foods. Here, we aimed to compare the digestomes of raw and thermally treated (boiled and roasted) peanuts, resulting from the INFOGEST digestion protocol for solid food, upon defatting the digests in two different manners. The most reproducible results of peanut digests were obtained in downstream analyses on TCA/acetone defatting. Unfortunately, defatting, even with an optimized TCA/acetone procedure, leads to the loss of proteins and peptides. The results of our study reveal that different thermal treatments of peanuts affect protein extraction and gastric/gastrointestinal digestion. Roasting of peanuts seems to enhance the extraction of proteins during intestinal digestion to a notable extent. The increased intestinal digestion is a consequence of the delayed extraction of thermally treated peanut proteins, which are poorly soluble in acidic gastric digestion juice but are easily extracted when the pH of the media is raised as in the subsequent intestinal phase of the digestion. Thermal processing of peanuts impaired the gastrointestinal digestion of the peanut proteins, especially in the case of roasted samples. Full article
Show Figures

Figure 1

Back to TopTop