Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = difluoroboranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2855 KiB  
Article
New BODIPY Dyes Based on Benzoxazole as Photosensitizers in Radical Polymerization of Acrylate Monomers
by Agnieszka Skotnicka and Janina Kabatc
Materials 2022, 15(2), 662; https://doi.org/10.3390/ma15020662 - 16 Jan 2022
Cited by 16 | Viewed by 2787
Abstract
A series of 2-phenacylbenzoxazole difluoroboranes named BODIPY dyes (1–8) was designed and applied as photosensitizers (PS) for radical photopolymerization of acrylate monomer. The light absorption within the ultraviolet-visible (UV–Vis) range (λmax = 350–410 nm; εmax = 23,000–42,500 M−1cm−1 [...] Read more.
A series of 2-phenacylbenzoxazole difluoroboranes named BODIPY dyes (1–8) was designed and applied as photosensitizers (PS) for radical photopolymerization of acrylate monomer. The light absorption within the ultraviolet-visible (UV–Vis) range (λmax = 350–410 nm; εmax = 23,000–42,500 M−1cm−1), that is strongly influenced by the substituents on the C3 and C4 atoms of phenyl ring, matched the emission of the Omnicure S2000 light within 320–500 nm. The photosensitizer possess fluorescence quantum yield from about 0.005 to 0.99. The 2-phenacylbenzoxazole difluoroboranes, together with borate salt (Bor), iodonium salt (Iod) or pyridinium salt (Pyr) acting as co-initiators, can generate active radicals upon the irradiation with a High Pressure Mercury Lamp which initiates a high-performance UV–Vis light-induced radical polymerization at 320–500 nm. The polymers obtained are characterized by strong photoluminescence. It was found that the type of radical generator (co-initiator) has a significant effect on the kinetic of radical polymerization of acrylate monomer. Moreover, the chemical structure of the BODIPY dyes does not influence the photoinitiating ability of the photoinitiator. The concentration of the photoinitiating system affects the photoinitiating performance. These 2-phenacylbenzoxazole difluoroborane-based photoinitiating systems have promising applications in UV–Vis-light induced polymerization. Full article
(This article belongs to the Special Issue Recent Advances in Photoinitiators for Polymerization)
Show Figures

Figure 1

25 pages, 923 KiB  
Article
Benchmarking Density Functional Approximations for Excited-State Properties of Fluorescent Dyes
by Anna M. Grabarz and Borys Ośmiałowski
Molecules 2021, 26(24), 7434; https://doi.org/10.3390/molecules26247434 - 8 Dec 2021
Cited by 27 | Viewed by 3992
Abstract
This study presents an extensive analysis of the predictive power of time-dependent density functional theory in determining the excited-state properties of two groups of important fluorescent dyes, difluoroboranes and hydroxyphenylimidazo[1,2-a]pyridine derivatives. To ensure statistically meaningful results, the data set is comprised of 85 [...] Read more.
This study presents an extensive analysis of the predictive power of time-dependent density functional theory in determining the excited-state properties of two groups of important fluorescent dyes, difluoroboranes and hydroxyphenylimidazo[1,2-a]pyridine derivatives. To ensure statistically meaningful results, the data set is comprised of 85 molecules manifesting diverse photophysical properties. The vertical excitation energies and dipole moments (in the electronic ground and excited states) of the aforementioned dyes were determined using the RI-CC2 method (reference) and with 18 density functional approximations (DFA). The set encompasses DFAs with varying amounts of exact exchange energy (EEX): from 0% (e.g., SVWN, BLYP), through a medium (e.g., TPSSh, B3LYP), up to a major contribution of EEX (e.g., BMK, MN15). It also includes range-separated hybrids (CAM-B3LYP, LC-BLYP). Similar error profiles of vertical energy were obtained for both dye groups, although the errors related to hydroxyphenylimidazopiridines are significantly larger. Overall, functionals including 40–55% of EEX (SOGGA11-X, BMK, M06-2X) ensure satisfactory agreement with the reference vertical excitation energies obtained using the RI-CC2 method; however, MN15 significantly outperforms them, providing a mean absolute error of merely 0.04 eV together with a very high correlation coefficient (R2 = 0.98). Within the investigated set of functionals, there is no single functional that would equally accurately determine ground- and excited-state dipole moments of difluoroboranes and hydroxyphenylimidazopiridine derivatives. Depending on the chosen set of dyes, the most accurate μGS predictions were delivered by MN15 incorporating a major EEX contribution (difluoroboranes) and by PBE0 containing a minor EEX fraction (hydroxyphenylimidazopiridines). Reverse trends are observed for μES, i.e., for difluoroboranes the best results were obtained with functionals including a minor fraction of EEX, specifically PBE0, while in the case of hydroxyphenylimidazopiridines, much more accurate predictions were provided by functionals incorporating a major EEX contribution (BMK, MN15). Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

19 pages, 5535 KiB  
Article
Substituent and Solvent Polarity on the Spectroscopic Properties in Azo Derivatives of 2-Hydroxynaphthalene and Their Difluoroboranes Complexes
by Agnieszka Skotnicka and Przemysław Czeleń
Materials 2021, 14(12), 3387; https://doi.org/10.3390/ma14123387 - 18 Jun 2021
Cited by 2 | Viewed by 2547
Abstract
Novel fluorescent dyes such as difluoroborane complexes of 1-phenylazonaphthalen-2-ol derivatives were successfully synthesized and characterized with a focus on the influence of a substituent and a solvent on the basic photophysical properties. 1H, 11B, 13C, 15N, and 19F [...] Read more.
Novel fluorescent dyes such as difluoroborane complexes of 1-phenylazonaphthalen-2-ol derivatives were successfully synthesized and characterized with a focus on the influence of a substituent and a solvent on the basic photophysical properties. 1H, 11B, 13C, 15N, and 19F nuclear magnetic resonance (NMR) spectra of substituted 1-phenylazonaphthalen-2-ol difluoroboranes and their parent azo dyes were recorded and discussed. The absorption and emission properties of synthesized compounds were investigated in solvents of varying polarity. They were found to be fluorescent despite the presence of the azo group. The azo group rotation was blocked by complexing with -BF2 to get a red shift in absorption. Solvent-dependent spectral properties of compounds were investigated using Lipper-Mataga and Bakhshiev plot. The calculated DFT energies and Frontier Molecular Orbitals calculations of the studied compounds were proved to be consistent with the experimental observations. Full article
(This article belongs to the Special Issue Dyes: Synthesis, Properties, and Applications)
Show Figures

Figure 1

13 pages, 3994 KiB  
Article
Substituted 2-Phenacylbenzoxazole Difluoroboranes: Synthesis, Structure and Properties
by Agnieszka Skotnicka and Przemysław Czeleń
Molecules 2020, 25(22), 5420; https://doi.org/10.3390/molecules25225420 - 19 Nov 2020
Cited by 3 | Viewed by 2478
Abstract
Novel fluorescent dyes such as benzoxazole-boron complexes, bearing β-ketoiminate ligands, have been synthesized and characterized with a focus on the influence of a substituent on the basic photophysical properties. 1H, 11B, 13C, 15N, and 19F nuclear magnetic resonance [...] Read more.
Novel fluorescent dyes such as benzoxazole-boron complexes, bearing β-ketoiminate ligands, have been synthesized and characterized with a focus on the influence of a substituent on the basic photophysical properties. 1H, 11B, 13C, 15N, and 19F nuclear magnetic resonance (NMR) spectra of substituted 2-phenacylbenzoxazole difluoroboranes have been recorded and discussed. It is worth mentioning that a high correlation coefficient was found between 15N-NMR parameters and substituent constants. The photophysical properties of these new dyes have been investigated by fluorescence and ultraviolet-visible (UV-Vis) absorption spectroscopy. The geometry optimization, vibrational spectra, and the HOMO and LUMO energies were calculated based on density functional theory with the use of the B3LYP functional and 6-311++G(d,p) basis set. Full article
(This article belongs to the Special Issue Synthetic Heterocyclic Chemistry)
Show Figures

Graphical abstract

Back to TopTop