Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = differential pressure drawdown

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3406 KiB  
Article
Analysis of Changes in the Stress–Strain State and Permeability of a Terrigenous Reservoir Based on a Numerical Model of the Near-Well Zone with Casing and Perforation Channels
by Sergey Chernyshov, Sergey Popov, Xiaopu Wang, Vadim Derendyaev, Yongfei Yang and Huajie Liu
Appl. Sci. 2024, 14(21), 9993; https://doi.org/10.3390/app14219993 - 1 Nov 2024
Cited by 4 | Viewed by 1018
Abstract
A finite element model, which includes reservoir rock, cement stone, casing, and perforation channels, was developed. The purpose of the study is to create a geomechanical model of the zone around the well, which includes support elements and perforation channels. This model will [...] Read more.
A finite element model, which includes reservoir rock, cement stone, casing, and perforation channels, was developed. The purpose of the study is to create a geomechanical model of the zone around the well, which includes support elements and perforation channels. This model will help predict changes in the productivity coefficient of a terrigenous reservoir and determine the most efficient mode of operation of a producing well. In order to exclude the stress concentration within the casing–cement stone and cement stone–rock, the numerical model applies contact elements. As a result, structural elements slip, while the stresses are redistributed accurately. The numerical simulation of a stress state in the near-well zone was carried out by using the developed model with differential pressure drawdown on the terrigenous reservoir, one of the oil fields in the Perm region. It is shown that the safety factor of the casing reaches roughly 3–4 units. The only exceptions are the upper and lower parts of the perforations, where this parameter is close to one unit. The safety factor of cement stone accounts for 2–3 units. However, parts with its lowest value (1.35) are also concentrated near the perforation channels. In order to analyze the change in permeability, the dependence of the safety factor on effective stresses was taken into account. Therefore, it was found that, in the upper and lower parts of perforations, the stresses decreased, while permeability rose by up to 20% of the initial value. An increase in differential pressure drawdown, on the contrary, can lead to a permeability reduction of 25%, especially in the lateral parts of the perforations. Areas of rock destruction under tensile and compressive forces were identified by using the Mohr–Coulomb criterion. It is estimated that with an increase in pressure drawdown, the areas of rock destruction under tensile force disappear, while the areas of rock destruction under compression increase. After further analysis, it was found that, with the maximum pressure drawdown of 12 MPa, the well productivity index can decrease by 15% due to the reservoir rock compaction. Full article
(This article belongs to the Topic Petroleum and Gas Engineering)
Show Figures

Figure 1

20 pages, 4418 KiB  
Article
Optimal Design and Prediction-Independent Verification of Groundwater Monitoring Network
by Sreekanth Janardhanan, Dan Gladish, Dennis Gonzalez, Dan Pagendam, Trevor Pickett and Tao Cui
Water 2020, 12(1), 123; https://doi.org/10.3390/w12010123 - 30 Dec 2019
Cited by 10 | Viewed by 3688
Abstract
In this study, we developed a workflow that applies a complex groundwater model for purpose-driven groundwater monitoring network design and uses linear uncertainty analysis to explore the predictive dependencies and provide insights into the veracity of the monitoring design. A numerical groundwater flow [...] Read more.
In this study, we developed a workflow that applies a complex groundwater model for purpose-driven groundwater monitoring network design and uses linear uncertainty analysis to explore the predictive dependencies and provide insights into the veracity of the monitoring design. A numerical groundwater flow model was used in a probabilistic modelling framework for obtaining the spatial distribution of predicted drawdown for a wide range of plausible combination of uncertain parameters pertaining to the deep sedimentary basin and groundwater flow processes. Reduced rank spatial prediction was used to characterize dominant trends in these spatial drawdown patterns using empirical orthogonal functions (EOF). A differential evolution algorithm was used to identify optimal locations for multi-level piezometers for collecting groundwater pressure data to minimize predictive uncertainty in groundwater drawdown. Data-worth analysis helps to explore the veracity of the design by using only the sensitivities of the observations to predictions independent of the absolute values of predictions. A 10-bore monitoring network that collects drawdown data from multiple depths at each location was designed. The data-worth analysis revealed that the design honours sensitivities of the predictions of interest to parameters. The designed network provided relatively high data-worth for minimizing uncertainty in the drawdown prediction at locations of interest. Full article
(This article belongs to the Special Issue Advances in Groundwater and Surface Water Monitoring and Management)
Show Figures

Figure 1

20 pages, 381 KiB  
Review
Experimental Study of Formation Damage during Underbalanced-Drilling in Naturally Fractured Formations
by Siroos Salimi and Ali Ghalambor
Energies 2011, 4(10), 1728-1747; https://doi.org/10.3390/en4101728 - 24 Oct 2011
Cited by 25 | Viewed by 8069
Abstract
This paper describes an experimental investigation of formation damage in a fractured carbonate core sample under underbalanced drilling (UBD) conditions. A major portion of this study has concentrated on problems which are often associated with UBD and the development of a detailed protocol [...] Read more.
This paper describes an experimental investigation of formation damage in a fractured carbonate core sample under underbalanced drilling (UBD) conditions. A major portion of this study has concentrated on problems which are often associated with UBD and the development of a detailed protocol for proper design and execution of an UBD program. Formation damage effects, which may occur even if the underbalanced pressure condition is maintained 100% of the time during drilling operation, have been studied. One major concern for formation damage during UBD operations is the loss of the under-balanced pressure condition. Hence, it becomes vital to evaluate the sensitivity of the formation to the effect of an overbalanced pulse situation. The paper investigates the effect of short pulse overbalance pressure during underbalanced conditions in a fractured chalk core sample. Special core tests using a specially designed core holder are conducted on the subject reservoir core. Both overbalance and underbalanced tests were conducted with four UBD drilling fluids. Core testing includes measurements of the initial permeability and return permeability under two different pressure conditions (underbalanced and overbalanced). Then the procedure is followed by applying a differential pressure on the core samples to mimic the drawdown effect to determine the return permeability capacity. In both UBD and short pulse OBP four mud formulations are used which are: lab oil, brine (3% KCL), water-based mud (bentonite with XC polymer) and fresh water. The return permeability measurements show that a lab oil system performed fairly well during UBD and short OB conditions. The results indicate that a short overbalance pressure provides a significant reduction in permeability of the fractured formations. In most tests, even application of a high drawdown pressure during production cannot restore the initial permeability by more than 40%. Full article
(This article belongs to the Special Issue Advances in Petroleum Engineering)
Show Figures

Figure 1

Back to TopTop