Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = dentin matrix acidic phosphoprotein 1 (DMP1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 15018 KiB  
Article
Investigating the Osteoregenerative Properties of Juglans regia L. Extract on Mesenchymal Stem Cells and Osteoblasts Through Evaluation of Bone Markers: A Pilot Study
by Alina Hanga-Fărcaș, Gabriela Adriana Filip, Simona Valeria Clichici, Laura Grațiela Vicaș, Olga Şoritău, Otilia Andercou, Luminița Fritea and Mariana Eugenia Mureșan
J. Funct. Biomater. 2025, 16(7), 268; https://doi.org/10.3390/jfb16070268 - 21 Jul 2025
Viewed by 468
Abstract
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) [...] Read more.
Bone tissue regeneration is a complex process that takes place at the level of osteoblasts derived from mesenchymal cells and occurs under the action of multiple signaling pathways and through the expression of osteoregenerative markers. The leaf extract of Juglans regia L. (JR) is rich in polyphenols with demonstrated osteoregeneration effects. In the present study, we investigated the extract’s effects on three types of cells with various stages of differentiation: adult mesenchymal stem cells (MSCs), osteoblasts at low passage (O6) and osteoblasts at advanced passage (O10). To assess the efficacy of the walnut leaf extract, in vitro treatments were performed in comparison with ellagic acid (EA) and catechin (CAT). The osteoregenerative properties of the leaf extract were evaluated in terms of cell viability, bone mineralization (by staining with alizarin red) and the expression of osteogenesis markers such as osteocalcin (OC), osteopontin (OPN), dentin matrix acidic phosphoprotein 1 (DMP1) and collagen type 1A. Another compound implicated in oxidative stress response, but also a bone homeostasis regulator, nuclear factor erythroid 2-related factor 2 (NRF2), was studied by immunocytochemistry. Together with collagen amount, alkaline phosphatase (ALP) activity and NF-kB levels were measured in cell lysates and supernatants. The obtained results demonstrate that JR treatment induced osteogenic differentiation and bone mineralization, and it showed protective effects against oxidative stress. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

27 pages, 1922 KiB  
Review
Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells
by Naveen Jeyaraman, Gollahalli Shivashankar Prajwal, Madhan Jeyaraman, Sathish Muthu and Manish Khanna
Osteology 2021, 1(3), 149-174; https://doi.org/10.3390/osteology1030016 - 15 Sep 2021
Cited by 5 | Viewed by 4748
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use [...] Read more.
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration. Full article
Show Figures

Figure 1

11 pages, 5527 KiB  
Article
Mineral Trioxide Aggregate (MTA) Upregulates the Expression of DMP1 in Direct Pulp Capping in the Rat Molar
by Maiko Yamada, Motohiko Nagayama, Yuka Miyamoto, Satoshi Kawano, Yoshiaki Takitani, Masashi Tanaka, Michiko Ehara, Juna Nakao, Takanaga Ochiai, Yoshihiro Shibukawa and Takakazu Yoshida
Materials 2021, 14(16), 4640; https://doi.org/10.3390/ma14164640 - 18 Aug 2021
Cited by 12 | Viewed by 3283
Abstract
Mineral trioxide aggregate (MTA) is an alternative endodontic material that predicts conductive or inductive calcified tissue formation from immature pulp mesenchymal stem cells (IPMSCs). The purpose of this study was to investigate whether MTA could promote reparative odontoblast differentiation via IPMSCs in the [...] Read more.
Mineral trioxide aggregate (MTA) is an alternative endodontic material that predicts conductive or inductive calcified tissue formation from immature pulp mesenchymal stem cells (IPMSCs). The purpose of this study was to investigate whether MTA could promote reparative odontoblast differentiation via IPMSCs in the early phase of regeneration and compare with calcium hydroxide (CH). Direct pulp capping using calcium hydroxide (CH), MTA, and MTA with platelet-rich plasma (MTA + PRP) was performed on maxillary first molars of 8-week-old male Wistar rats (n = 36). After 3, 7, or 14 days, the teeth were analyzed for mineral density (MD) and volume of MD (VMD) via micro-focusing computed tomography (µCT), nestin, dentin matrix acidic phosphoprotein 1 (DMP1) immunohistochemistry, and real-time PCR for DMP1 mRNA expression. MTA stimulated the early phase differentiation of the IPMSCs into odontoblasts, with positive results for nestin and DMP1 compared with CH. Moreover, MTA + PRP stimulated calcified granule and dentin bridge formation through calcium mineral deposition, following the induction of DMP1 mRNA expression in IPMSCs. Our results suggested that the combination of MTA and PRP is an effective and clinically applicable method for activating endogenous dental pulp stem cells into odontoblasts in the early stages of pulp regeneration. Full article
(This article belongs to the Special Issue Materials for Hard Tissue Repair and Regeneration)
Show Figures

Figure 1

14 pages, 2641 KiB  
Article
Cold Atmospheric Plasma Promotes Regeneration-Associated Cell Functions of Murine Cementoblasts In Vitro
by Benedikt Eggers, Jana Marciniak, James Deschner, Matthias Bernhard Stope, Alexander Mustea, Franz-Josef Kramer and Marjan Nokhbehsaim
Int. J. Mol. Sci. 2021, 22(10), 5280; https://doi.org/10.3390/ijms22105280 - 17 May 2021
Cited by 21 | Viewed by 3716
Abstract
The aim of the study was to examine the efficacy of cold atmospheric plasma (CAP) on the mineralization and cell proliferation of murine dental cementoblasts. Cells were treated with CAP and enamel matrix derivates (EMD). Gene expression of alkaline phosphatase (ALP), bone gamma-carboxyglutamate [...] Read more.
The aim of the study was to examine the efficacy of cold atmospheric plasma (CAP) on the mineralization and cell proliferation of murine dental cementoblasts. Cells were treated with CAP and enamel matrix derivates (EMD). Gene expression of alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), periostin (POSTN), osteopontin (OPN), osterix (OSX), collagen type I alpha 1 chain (COL1A1), dentin matrix acidic phosphoprotein (DMP)1, RUNX family transcription factor (RUNX)2, and marker of proliferation Ki-67 (KI67) was quantified by real-time PCR. Protein expression was analyzed by immunocytochemistry and ELISA. ALP activity was determined by ALP assay. Von Kossa and alizarin red staining were used to display mineralization. Cell viability was analyzed by XTT assay, and morphological characterization was performed by DAPI/phalloidin staining. Cell migration was quantified with an established scratch assay. CAP and EMD upregulated both mRNA and protein synthesis of ALP, POSTN, and OPN. Additionally, DMP1 and COL1A1 were upregulated at both gene and protein levels. In addition to upregulated RUNX2 mRNA levels, treated cells mineralized more intensively. Moreover, CAP treatment resulted in an upregulation of KI67, higher cell viability, and improved cell migration. Our study shows that CAP appears to have stimulatory effects on regeneration-associated cell functions in cementoblasts. Full article
(This article belongs to the Special Issue Bone Metastasis Challenge: New Ideas and Future Perspectives)
Show Figures

Figure 1

13 pages, 16045 KiB  
Article
Endochondral Ossification Induced by Cell Transplantation of Endothelial Cells and Bone Marrow Stromal Cells with Copolymer Scaffold Using a Rat Calvarial Defect Model
by Zhe Xing, Xiaofeng Jiang, Qingzong Si, Anna Finne-Wistrand, Bin Liu, Ying Xue and Kamal Mustafa
Polymers 2021, 13(9), 1521; https://doi.org/10.3390/polym13091521 - 9 May 2021
Cited by 5 | Viewed by 3490
Abstract
It has been recently reported that, in a rat calvarial defect model, adding endothelial cells (ECs) to a culture of bone marrow stromal cells (BMSCs) significantly enhanced bone formation. The aim of this study is to further investigate the ossification process of newly [...] Read more.
It has been recently reported that, in a rat calvarial defect model, adding endothelial cells (ECs) to a culture of bone marrow stromal cells (BMSCs) significantly enhanced bone formation. The aim of this study is to further investigate the ossification process of newly formed osteoid and host response to the poly(L-lactide-co-1,5-dioxepan-2-one) [poly(LLA-co-DXO)] scaffolds based on previous research. Several different histological methods and a PCR Array were applied to evaluate newly formed osteoid after 8 weeks after implantation. Histological results showed osteoid formed in rat calvarial defects and endochondral ossification-related genes, such as dentin matrix acidic phosphoprotein 1 (Dmp1) and collagen type II, and alpha 1 (Col2a1) exhibited greater expression in the CO (implantation with BMSC/EC/Scaffold constructs) than the BMSC group (implantation with BMSC/Scaffold constructs) as demonstrated by PCR Array. It was important to notice that cartilage-like tissue formed in the pores of the copolymer scaffolds. In addition, multinucleated giant cells (MNGCs) were observed surrounding the scaffold fragments. It was concluded that the mechanism of ossification might be an endochondral ossification process when the copolymer scaffolds loaded with co-cultured ECs/BMSCs were implanted into rat calvarial defects. MNGCs were induced by the poly(LLA-co-DXO) scaffolds after implantation, and more specific in vivo studies are needed to gain a better understanding of host response to copolymer scaffolds. Full article
(This article belongs to the Special Issue Polymeric Materials for Bone Tissue Engineering)
Show Figures

Graphical abstract

19 pages, 1273 KiB  
Article
Enamel Matrix Derivative Promote Primary Human Pulp Cell Differentiation and Mineralization
by Elisabeth Aurstad Riksen, Maria A. Landin, Sjur Reppe, Yukio Nakamura, Ståle Petter Lyngstadaas and Janne E. Reseland
Int. J. Mol. Sci. 2014, 15(5), 7731-7749; https://doi.org/10.3390/ijms15057731 - 5 May 2014
Cited by 10 | Viewed by 6846
Abstract
Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone [...] Read more.
Enamel matrix derivative (EMD) has been found to induce reactive dentin formation; however the molecular mechanisms involved are unclear. The effect of EMD (5–50 μg/mL) on primary human pulp cells were compared to untreated cells and cells incubated with 10−8 M dexamethasone (DEX) for 1, 2, 3, 7, and 14 days in culture. Expression analysis using Affymetrix microchips demonstrated that 10 μg/mL EMD regulated several hundred genes and stimulated the gene expression of proteins involved in mesenchymal proliferation and differentiation. Both EMD and DEX enhanced the expression of amelogenin (amel), and the dentinogenic markers dentin sialophosphoprotein (DSSP) and dentin matrix acidic phosphoprotein 1 (DMP1), as well as the osteogenic markers osteocalcin (OC, BGLAP) and collagen type 1 (COL1A1). Whereas, only EMD had effect on alkaline phosphatase (ALP) mRNA expression, the stimulatory effect were verified by enhanced secretion of OC and COL1A from EMD treated cells, and increased ALP activity in cell culture medium after EMD treatment. Increased levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and monocyte chemoattractant proteins (MCP-1) in the cell culture medium were also found. Consequently, the suggested effect of EMD is to promote differentiation of pulp cells and increases the potential for pulpal mineralization to favor reactive dentine formation. Full article
(This article belongs to the Special Issue Signalling Molecules and Signal Transduction in Cells 2014)
Show Figures

Back to TopTop