Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = delayed quantum feedback

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3430 KiB  
Article
Application of an Improved State Feedback Control in the Selective Catalytic Reduction Denitrification Systems of Coal Power Units Under Variable Load Conditions
by Xiguo Cao, Yongtao Zhang, Heng Hu, Xiaochao Fan and Jiading Jiang
Processes 2024, 12(11), 2570; https://doi.org/10.3390/pr12112570 - 17 Nov 2024
Viewed by 794
Abstract
Selective catalytic reduction (SCR) flue gas denitrification systems are inherently complex, typically embodying characteristics of non-linearity, significant time delays, and susceptibility to multiple disturbances. In the context of coal power units engaging in deep load cycling and rapid frequency adjustment, conventional proportional-integral-derivative (PID) [...] Read more.
Selective catalytic reduction (SCR) flue gas denitrification systems are inherently complex, typically embodying characteristics of non-linearity, significant time delays, and susceptibility to multiple disturbances. In the context of coal power units engaging in deep load cycling and rapid frequency adjustment, conventional proportional-integral-derivative (PID) control struggles to meet the demands of effective control. This study introduces a control strategy that incorporates a “state observer + Linear Quadratic Regulator (LQR) state feedback + Improved Quantum Genetic Algorithm (IQGA) optimized PID”. Initially, local linear mathematical models of an SCR denitrification system at 340 MW, 450 MW, and 540 MW loads were used to design state observer and LQR state feedback control parameters for each operational condition. At a single load point, the IQGA was employed to optimize the outer loop PID parameters, followed by simulation experiments of load increases and decreases between 340 MW and 540 MW. The results demonstrated that, compared to two other strategies, the proposed approach reduced the overshoot by a minimum of 1.5% and shortened the adjustment time by 31.7% under conditions of step disturbances and internal perturbations. Throughout variable operational conditions, the strategy consistently exhibited minimal output fluctuations, rapid adjustment capabilities, strong disturbance rejection, and robust stability. This algorithm proves to be an effective method for controlling NOx concentrations, offering insights for precise ammonia injection control in future applications. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 8050 KiB  
Article
A SiPM-Enabled Portable Delayed Fluorescence Photon Counting Device: Climatic Plant Stress Biosensing
by William J. Pietro and Ozzy Mermut
Biosensors 2022, 12(10), 817; https://doi.org/10.3390/bios12100817 - 2 Oct 2022
Cited by 6 | Viewed by 4363
Abstract
A portable and sensitive time-resolved biosensor for capturing very low intensity light emission is a promising avenue to study plant delayed fluorescence. These weak emissions provide insight on plant health and can be useful in plant science as well as in the development [...] Read more.
A portable and sensitive time-resolved biosensor for capturing very low intensity light emission is a promising avenue to study plant delayed fluorescence. These weak emissions provide insight on plant health and can be useful in plant science as well as in the development of accurate feedback indicators for plant growth and yield in applications of agricultural crop cultivation. A field-based delayed fluorescence device is also desirable to enable monitoring of plant stress response to climate change. Among basic techniques for the detection of rapidly fluctuating low intensity light is photon counting. Despite its vast utility, photon counting techniques often relying on photomultiplier tube (PMT) technology, having restricted use in agricultural and environment measurements of plant stress outside of the laboratory setting, mainly due to the prohibitive cost of the equipment, high voltage nature, and the complexity of its operation. However, recent development of the new generation solid-state silicon photomultiplier (SiPM) single photon avalanche diode array has enabled the availability of high quantum efficiency, easy-to-operate, compact, photon counting systems which are not constrained to sophisticated laboratories, and are accessible owing to their low-cost. In this contribution, we have conceived, fabricated and validated a novel SiPM-based photon counting device with integrated plug-and-play excitation LED, all housed inside a miniaturized sample chamber to record weak delayed fluorescence lifetime response from plant leaves subjected to varying temperature condition and drought stress. Findings from our device show that delayed fluorescence reports on the inactivation to the plant’s photosystem II function in response to unfavorable acute environmental heat and cold shock stress as well as chronic water deprivation. Results from our proof-of-concept miniaturized prototype demonstrate a new, simple and effective photon counting instrument is achieved, one which can be deployed in-field to rapidly and minimally invasively assess plant physiological growth and health based on rapid, ultra-weak delayed fluorescence measurements directly from a plant leaf. Full article
Show Figures

Figure 1

10 pages, 1457 KiB  
Article
Area-Time Efficient Hardware Architecture for CRYSTALS-Kyber
by Tuy Tan Nguyen, Sungjae Kim, Yongjun Eom and Hanho Lee
Appl. Sci. 2022, 12(11), 5305; https://doi.org/10.3390/app12115305 - 24 May 2022
Cited by 15 | Viewed by 6626
Abstract
This paper presents a novel area-time efficient hardware architecture of the lattice-based CRYSTALS-Kyber, which has entered the third round of the post-quantum cryptography standardization competition hosted by the National Institute of Standards and Technology. By developing a dual-path delay feedback number theoretic transform [...] Read more.
This paper presents a novel area-time efficient hardware architecture of the lattice-based CRYSTALS-Kyber, which has entered the third round of the post-quantum cryptography standardization competition hosted by the National Institute of Standards and Technology. By developing a dual-path delay feedback number theoretic transform multiplier dedicating for Kyber parameter set and deploying this multiplier in the Kyber architecture, the key generation, encryption, and decryption operations are accelerated substantially. Furthermore, the proposed architecture offers the best value of area-time product in comparison with existing approaches. The implementation results on Xilinx Vivado targeted for Virtex-7 FPGA board demonstrate that the proposed Kyber cryptoprocessor completes encryption and decryption operations in approximately 57.5 μs at the highest frequency of 226 MHz. Furthermore, the area-time product value when using the proposed Kyber architecture is improved by at least twofold compared with existing architectures. Full article
(This article belongs to the Special Issue Recent Advances in Cybersecurity and Computer Networks)
Show Figures

Figure 1

9 pages, 2076 KiB  
Article
Control of Timing Stability, and Suppression in Delayed Feedback Induced Frequency-Fluctuations by Means of Power Split Ratio and Delay Phase-Dependent Dual-Loop Optical Feedback
by Haroon Asghar and John G. McInerney
Appl. Sci. 2021, 11(10), 4529; https://doi.org/10.3390/app11104529 - 16 May 2021
Cited by 1 | Viewed by 1949
Abstract
We experimentally demonstrated a power split ratio and optical delay phase dependent dual-loop optical feedback to investigate the suppression of frequency-fluctuations induced due to delayed optical feedback. The device under investigation is self-mode-locked (SML) two-section quantum-dash (QDash) laser operating at ∼21 GHz and [...] Read more.
We experimentally demonstrated a power split ratio and optical delay phase dependent dual-loop optical feedback to investigate the suppression of frequency-fluctuations induced due to delayed optical feedback. The device under investigation is self-mode-locked (SML) two-section quantum-dash (QDash) laser operating at ∼21 GHz and emitting at ∼1.55 μm. The effect of two selective combinations of power split ratios (Loop-I: −23.29 dB and Loop-II: −28.06 dB, and Loop-I and Loop-II: −22 dB) and two optical delay phase settings ((i) stronger cavity set to integer resonance and fine-tuning the weaker cavity, (ii) weaker cavity set to integer resonance and fine-tuning of stronger cavity) on the suppression of cavity side-bands have been studied. Measured experimental results demonstrate that delayed optical feedback induced frequency-fluctuations can be effectively suppressed on integer resonance as well as on full delay range tuning (0–84 ps) by adjusting coupling strength −22 dB through Loop-I and Loop-II, respectively. Our findings suggest that power split ratio and delays phase-dependent dual-loop optical feedback can be used to maximize the performance of semiconductor mode-locked lasers. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

12 pages, 3400 KiB  
Article
Precise Photon Correlation Measurement of a Chaotic Laser
by Xiaomin Guo, Chen Cheng, Tong Liu, Xin Fang and Yanqiang Guo
Appl. Sci. 2019, 9(22), 4907; https://doi.org/10.3390/app9224907 - 15 Nov 2019
Cited by 3 | Viewed by 3187
Abstract
The second order photon correlation g(2)(τ) of a chaotic optical-feedback semiconductor laser is precisely measured using a Hanbury Brown–Twiss interferometer. The accurate g(2)(τ) with non-zero delay time is obtained experimentally from the photon pair time [...] Read more.
The second order photon correlation g(2)(τ) of a chaotic optical-feedback semiconductor laser is precisely measured using a Hanbury Brown–Twiss interferometer. The accurate g(2)(τ) with non-zero delay time is obtained experimentally from the photon pair time interval distribution through a ninth-order self-convolution correction. The experimental results agree well with the theoretical analysis. The relative error of g(2)(τ) is no more than 5‰ within 50 ns delay time. The bunching effect and coherence time of the chaotic laser are measured via the precise photon correlation technique. This technique provides a new tool to improve the accuracy of g(2)(τ) measurement and boost applications of quantum statistics and correlation. Full article
(This article belongs to the Special Issue Quartz-Enhanced Photoacoustic and Photothermal Spectroscopy)
Show Figures

Figure 1

4 pages, 190 KiB  
Proceeding Paper
Exciting Dressed BICs Via Photon Scattering and Delayed Quantum Feedback
by Giuseppe Calajó, Yao-Lung L. Fang, Harold U. Baranger and Francesco Ciccarello
Proceedings 2019, 12(1), 18; https://doi.org/10.3390/proceedings2019012018 - 2 Jul 2019
Viewed by 1761
Abstract
We consider a semi-infinite waveguide with linear dispersion coupled to a qubit, in which a dressed bound state in the continuum (BIC) is known to exist. We predict that this BIC can be excited with significant probability via multi-photon scattering in the non-Markovian [...] Read more.
We consider a semi-infinite waveguide with linear dispersion coupled to a qubit, in which a dressed bound state in the continuum (BIC) is known to exist. We predict that this BIC can be excited with significant probability via multi-photon scattering in the non-Markovian regime where the photon delay time (corresponding to the qubit-mirror distance) is of the order of the qubit’s decay time. A similar process excites the BIC existing in an infinite waveguide coupled to a pair of qubits, yielding stationary entanglement between them. This shows, in particular, that photon trapping via scattering can occur without band-edge effects or cavities, the essential resource being instead the delayed quantum feedback due to the mirror. Full article
(This article belongs to the Proceedings of 11th Italian Quantum Information Science conference (IQIS2018))
Back to TopTop