Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = degraded document binarization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7145 KB  
Article
A Benchmark Study of Classical and U-Net ResNet34 Methods for Binarization of Balinese Palm Leaf Manuscripts
by Imam Yuadi, Khoirun Nisa’, Nisak Ummi Nazikhah, Yunus Abdul Halim, A. Taufiq Asyhari and Chih-Chien Hu
Heritage 2025, 8(8), 337; https://doi.org/10.3390/heritage8080337 - 18 Aug 2025
Viewed by 567
Abstract
Ancient documents that have undergone physical and visual degradation pose significant challenges in the digital recognition and preservation of information. This research aims to evaluate the effectiveness of ten classic binarization methods, including Otsu, Niblack, Sauvola, and ISODATA, as well as other adaptive [...] Read more.
Ancient documents that have undergone physical and visual degradation pose significant challenges in the digital recognition and preservation of information. This research aims to evaluate the effectiveness of ten classic binarization methods, including Otsu, Niblack, Sauvola, and ISODATA, as well as other adaptive methods, in comparison to the U-Net ResNet34 model trained on 256 × 256 image blocks for extracting textual content and separating it from the degraded parts and background of palm leaf manuscripts. We focused on two significant collections, Lontar Terumbalan, with a total of 19 images of Balinese manuscripts from the National Library of Indonesia Collection, and AMADI Lontarset, with a total of 100 images from ICHFR 2016. Results show that the deep learning approach outperforms classical methods in terms of overall evaluation metrics. The U-Net ResNet34 model reached the highest Dice score of 0.986, accuracy of 0.983, SSIM of 0.938, RMSE of 0.143, and PSNR of 17.059. Among the classical methods, ISODATA achieved the best results, with a Dice score of 0.957 and accuracy of 0.933, but still fell short of the deep learning model across most evaluation metrics. Full article
Show Figures

Figure 1

30 pages, 5602 KB  
Review
A Comprehensive Review on Document Image Binarization
by Bilal Bataineh, Mohamed Tounsi, Nuha Zamzami, Jehan Janbi, Waleed Abdel Karim Abu-ain, Tarik AbuAin and Shaima Elnazer
J. Imaging 2025, 11(5), 133; https://doi.org/10.3390/jimaging11050133 - 26 Apr 2025
Cited by 1 | Viewed by 3721
Abstract
In today’s digital age, the conversion of hardcopy documents into digital formats is widespread. This process involves electronically scanning and storing large volumes of documents. These documents come from various sources, including records and reports, camera-captured text and screen snapshots, official documents, newspapers, [...] Read more.
In today’s digital age, the conversion of hardcopy documents into digital formats is widespread. This process involves electronically scanning and storing large volumes of documents. These documents come from various sources, including records and reports, camera-captured text and screen snapshots, official documents, newspapers, medical reports, music scores, and more. In the domain of document analysis techniques, an essential step is document image binarization. Its goal is to eliminate unnecessary data from images and preserve only the text. Despite the existence of multiple techniques for binarization, the presence of degradation in document images can hinder their efficacy. The objective of this work is to provide an extensive review and analysis of the document binarization field, emphasizing its importance and addressing the challenges encountered during the image binarization process. Additionally, it provides insights into techniques and methods employed for image binarization. The current paper also introduces benchmark datasets for evaluating binarization accuracy, model training, evaluation metrics, and the effectiveness of recent methods. Full article
(This article belongs to the Section Document Analysis and Processing)
Show Figures

Figure 1

13 pages, 4727 KB  
Article
Mathematical Data Models and Context-Based Features for Enhancing Historical Degraded Manuscripts Using Neural Network Classification
by Pasquale Savino and Anna Tonazzini
Mathematics 2024, 12(21), 3402; https://doi.org/10.3390/math12213402 - 30 Oct 2024
Viewed by 939
Abstract
A common cause of deterioration in historic manuscripts is ink transparency or bleeding from the opposite page. Philologists and paleographers can significantly benefit from minimizing these interferences when attempting to decipher the original text. Additionally, computer-aided text analysis can also gain from such [...] Read more.
A common cause of deterioration in historic manuscripts is ink transparency or bleeding from the opposite page. Philologists and paleographers can significantly benefit from minimizing these interferences when attempting to decipher the original text. Additionally, computer-aided text analysis can also gain from such text enhancement. In previous work, we proposed the use of neural networks (NNs) in combination with a data model that characterizes the damage when both sides of a page have been digitized. This approach offers the distinct advantage of allowing the creation of an artificial training set that teaches the NN to differentiate between clean and damaged pixels. We tested this concept using a shallow NN, which proved effective in categorizing texts with varying levels of deterioration. In this study, we adapt the NN design to tackling remaining classification uncertainties caused by areas of text overlap, inhomogeneity, and peaks of degradation. Specifically, we introduce a new output class for pixels within overlapping text areas and incorporate additional features related to the pixel context information to promote the same classification for pixels adjacent to each other. Our experiments demonstrate that these enhancements significantly improve the classification accuracy. This improvement is evident in the quality of both binarization, which aids in text analysis, and virtual restoration, aimed at recovering the manuscript’s original appearance. Tests conducted on a public dataset, using standard quality indices, reveal that the proposed method outperforms both our previous proposals and other notable methods found in the literature. Full article
(This article belongs to the Special Issue Mathematical Methods for Image Processing and Understanding)
Show Figures

Figure 1

25 pages, 13403 KB  
Review
A Review of Document Binarization: Main Techniques, New Challenges, and Trends
by Zhengxian Yang, Shikai Zuo, Yanxi Zhou, Jinlong He and Jianwen Shi
Electronics 2024, 13(7), 1394; https://doi.org/10.3390/electronics13071394 - 7 Apr 2024
Cited by 9 | Viewed by 7947
Abstract
Document image binarization is a challenging task, especially when it comes to text segmentation in degraded document images. The binarization, as a pre-processing step of Optical Character Recognition (OCR), is one of the most fundamental and commonly used segmentation methods. It separates the [...] Read more.
Document image binarization is a challenging task, especially when it comes to text segmentation in degraded document images. The binarization, as a pre-processing step of Optical Character Recognition (OCR), is one of the most fundamental and commonly used segmentation methods. It separates the foreground text from the background of the document image to facilitate subsequent image processing. In view of the different degradation degrees of document images, researchers have proposed a variety of solutions. In this paper, we have summarized some challenges and difficulties in the field of document image binarization. Approximately 60 methods documenting image binarization techniques are mentioned, including traditional algorithms and deep learning-based algorithms. Here, we evaluated the performance of 25 image binarization techniques on the H-DIBCO2016 dataset to provide some help for future research. Full article
(This article belongs to the Special Issue Deep Learning-Based Computer Vision: Technologies and Applications)
Show Figures

Figure 1

20 pages, 24378 KB  
Article
Diffusion-Denoising Process with Gated U-Net for High-Quality Document Binarization
by Sangkwon Han, Seungbin Ji and Jongtae Rhee
Appl. Sci. 2023, 13(20), 11141; https://doi.org/10.3390/app132011141 - 10 Oct 2023
Cited by 3 | Viewed by 3604
Abstract
The binarization of degraded documents represents a crucial preprocessing task for various document analyses, including optical character recognition and historical document analysis. Various convolutional neural network models and generative models have been used for document binarization. However, these models often struggle to deliver [...] Read more.
The binarization of degraded documents represents a crucial preprocessing task for various document analyses, including optical character recognition and historical document analysis. Various convolutional neural network models and generative models have been used for document binarization. However, these models often struggle to deliver generalized performance on noise types the model has not encountered during training and may have difficulty extracting intricate text strokes. We herein propose a novel approach to address these challenges by introducing the use of the latent diffusion model, a well-known high-quality image-generation model, into the realm of document binarization for the first time. By leveraging an iterative diffusion-denoising process within the latent space, our approach excels at producing high-quality, clean, binarized images and demonstrates excellent generalization using both data distribution and time steps during training. Furthermore, we enhance our model’s ability to preserve text strokes by incorporating a gated U-Net into the backbone network. The gated convolution mechanism allows the model to focus on the text region by combining gating values and features, facilitating the extraction of intricate text strokes. To maximize the effectiveness of our proposed model, we use a combination of the latent diffusion model loss and pixel-level loss, which aligns with the model’s structure. The experimental results on the Handwritten Document Image Binarization Contest and Document Image Binarization Contest benchmark datasets showcase the superior performance of our proposed model compared to existing methods. Full article
(This article belongs to the Special Issue AI-Based Image Processing: 2nd Edition)
Show Figures

Figure 1

23 pages, 7444 KB  
Review
A Review of Document Image Enhancement Based on Document Degradation Problem
by Yanxi Zhou, Shikai Zuo, Zhengxian Yang, Jinlong He, Jianwen Shi and Rui Zhang
Appl. Sci. 2023, 13(13), 7855; https://doi.org/10.3390/app13137855 - 4 Jul 2023
Cited by 11 | Viewed by 5106
Abstract
Document image enhancement methods are often used to improve the accuracy and efficiency of automated document analysis and recognition tasks such as character recognition. These document images could be degraded or damaged for various reasons including aging, fading handwriting, poor lighting conditions, watermarks, [...] Read more.
Document image enhancement methods are often used to improve the accuracy and efficiency of automated document analysis and recognition tasks such as character recognition. These document images could be degraded or damaged for various reasons including aging, fading handwriting, poor lighting conditions, watermarks, etc. In recent years, with the improvement of computer performance and the continuous development of deep learning, many methods have been proposed to enhance the quality of these document images. In this paper, we review six tasks of document degradation, namely, background texture, page smudging, fading, poor lighting conditions, watermarking, and blurring. We summarize the main models for each degradation problem as well as recent work, such as the binarization model that can be used to deal with the degradation of background textures, lettering smudges. When facing the problem of fading, a model for stroke connectivity can be used, while the other three degradation problems are mostly deep learning models. We discuss the current limitations and challenges of each degradation task and introduce the common public datasets and metrics. We identify several promising research directions and opportunities for future research. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 108354 KB  
Article
Imperceptible–Visible Watermarking to Information Security Tasks in Color Imaging
by Oswaldo Ulises Juarez-Sandoval, Francisco Javier Garcia-Ugalde, Manuel Cedillo-Hernandez, Jazmin Ramirez-Hernandez and Leobardo Hernandez-Gonzalez
Mathematics 2021, 9(19), 2374; https://doi.org/10.3390/math9192374 - 24 Sep 2021
Cited by 9 | Viewed by 3694
Abstract
Digital image watermarking algorithms have been designed for intellectual property, copyright protection, medical data management, and other related fields; furthermore, in real-world applications such as official documents, banknotes, etc., they are used to deliver additional information about the documents’ authenticity. In this context, [...] Read more.
Digital image watermarking algorithms have been designed for intellectual property, copyright protection, medical data management, and other related fields; furthermore, in real-world applications such as official documents, banknotes, etc., they are used to deliver additional information about the documents’ authenticity. In this context, the imperceptible–visible watermarking (IVW) algorithm has been designed as a digital reproduction of the real-world watermarks. This paper presents a new improved IVW algorithm for copyright protection that can deliver additional information to the image content. The proposed algorithm is divided into two stages: in the embedding stage, a human visual system-based strategy is used to embed an owner logotype or a 2D quick response (QR) code as a watermark into a color image, maintaining a high watermark imperceptibility and low image-quality degradation. In the exhibition, a new histogram binarization function approach is introduced to exhibit any watermark with enough quality to be recognized or decoded by any application, which is focused on reading QR codes. The experimental results show that the proposed algorithm can embed one or more watermark patterns, maintaining the high imperceptibility and visual quality of the embedded and the exhibited watermark. The performance evaluation shows that the method overcomes several drawbacks reported in previous algorithms, including geometric and image processing attacks such as JPEG and JPEG2000. Full article
(This article belongs to the Special Issue Computer Graphics, Image Processing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 13949 KB  
Article
Robust Combined Binarization Method of Non-Uniformly Illuminated Document Images for Alphanumerical Character Recognition
by Hubert Michalak and Krzysztof Okarma
Sensors 2020, 20(10), 2914; https://doi.org/10.3390/s20102914 - 21 May 2020
Cited by 18 | Viewed by 4600
Abstract
Image binarization is one of the key operations decreasing the amount of information used in further analysis of image data, significantly influencing the final results. Although in some applications, where well illuminated images may be easily captured, ensuring a high contrast, even a [...] Read more.
Image binarization is one of the key operations decreasing the amount of information used in further analysis of image data, significantly influencing the final results. Although in some applications, where well illuminated images may be easily captured, ensuring a high contrast, even a simple global thresholding may be sufficient, there are some more challenging solutions, e.g., based on the analysis of natural images or assuming the presence of some quality degradations, such as in historical document images. Considering the variety of image binarization methods, as well as their different applications and types of images, one cannot expect a single universal thresholding method that would be the best solution for all images. Nevertheless, since one of the most common operations preceded by the binarization is the Optical Character Recognition (OCR), which may also be applied for non-uniformly illuminated images captured by camera sensors mounted in mobile phones, the development of even better binarization methods in view of the maximization of the OCR accuracy is still expected. Therefore, in this paper, the idea of the use of robust combined measures is presented, making it possible to bring together the advantages of various methods, including some recently proposed approaches based on entropy filtering and a multi-layered stack of regions. The experimental results, obtained for a dataset of 176 non-uniformly illuminated document images, referred to as the WEZUT OCR Dataset, confirm the validity and usefulness of the proposed approach, leading to a significant increase of the recognition accuracy. Full article
(This article belongs to the Special Issue Document-Image Related Visual Sensors and Machine Learning Techniques)
Show Figures

Figure 1

25 pages, 6680 KB  
Review
Degraded Historical Document Binarization: A Review on Issues, Challenges, Techniques, and Future Directions
by Alaa Sulaiman, Khairuddin Omar and Mohammad F. Nasrudin
J. Imaging 2019, 5(4), 48; https://doi.org/10.3390/jimaging5040048 - 12 Apr 2019
Cited by 82 | Viewed by 11872
Abstract
In this era of digitization, most hardcopy documents are being transformed into digital formats. In the process of transformation, large quantities of documents are stored and preserved through electronic scanning. These documents are available from various sources such as ancient documentation, old legal [...] Read more.
In this era of digitization, most hardcopy documents are being transformed into digital formats. In the process of transformation, large quantities of documents are stored and preserved through electronic scanning. These documents are available from various sources such as ancient documentation, old legal records, medical reports, music scores, palm leaf, and reports on security-related issues. In particular, ancient and historical documents are hard to read due to their degradation in terms of low contrast and existence of corrupted artefacts. In recent times, degraded document binarization has been studied widely and several approaches were developed to deal with issues and challenges in document binarization. In this paper, a comprehensive review is conducted on the issues and challenges faced during the image binarization process, followed by insights on various methods used for image binarization. This paper also discusses the advanced methods used for the enhancement of degraded documents that improves the quality of documents during the binarization process. Further discussions are made on the effectiveness and robustness of existing methods, and there is still a scope to develop a hybrid approach that can deal with degraded document binarization more effectively. Full article
Show Figures

Figure 1

Back to TopTop