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Abstract: The binarization of degraded documents represents a crucial preprocessing task for vari-
ous document analyses, including optical character recognition and historical document analysis.
Various convolutional neural network models and generative models have been used for document
binarization. However, these models often struggle to deliver generalized performance on noise
types the model has not encountered during training and may have difficulty extracting intricate
text strokes. We herein propose a novel approach to address these challenges by introducing the use
of the latent diffusion model, a well-known high-quality image-generation model, into the realm
of document binarization for the first time. By leveraging an iterative diffusion-denoising process
within the latent space, our approach excels at producing high-quality, clean, binarized images and
demonstrates excellent generalization using both data distribution and time steps during training.
Furthermore, we enhance our model’s ability to preserve text strokes by incorporating a gated U-Net
into the backbone network. The gated convolution mechanism allows the model to focus on the text
region by combining gating values and features, facilitating the extraction of intricate text strokes.
To maximize the effectiveness of our proposed model, we use a combination of the latent diffusion
model loss and pixel-level loss, which aligns with the model’s structure. The experimental results
on the Handwritten Document Image Binarization Contest and Document Image Binarization Con-
test benchmark datasets showcase the superior performance of our proposed model compared to
existing methods.

Keywords: document binarization; deep learning; gated convolution; generative model; latent
diffusion models; text stroke

1. Introduction

Document images play a crucial role in digital document analysis, encompassing tasks
like optical character recognition, historical document restoration, and document classifica-
tion [1]. However, real-world document images often suffer from degradation caused by a
multitude of noise sources, including shadows, stains, ink smears, bleed-through, overwrit-
ing, and variable background intensity [2]. These instances of degraded document images
significantly impede various aspects of digital document analysis. Therefore, to effectively
perform digital document analysis, the preprocessing of degraded document images is
essential. Document binarization stands out as a pivotal preprocessing task, aiming to
produce pristine, binarized images by restoring text regions from degraded documents [3].
Document binarization goes beyond the removal of specific noise elements; it comprehen-
sively addresses a variety of degradation factors [4]. As illustrated in Figure 1, document
binarization plays a vital role in safeguarding the performance of document-related tasks
such as optical character recognition against the detrimental impact of noise.
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Figure 1. OCR performance improvement as a result of document binarization. (a) OCR results
for a document without binarization. (b) OCR results for a document with binarization using the
proposed model. Document binarization is effective in resolving performance degradation in various
document tasks.

However, converting a degraded document containing non-uniform noise into a clean,
binarized document presents challenges that traditional binarization algorithms struggle to
resolve, as shown in Figure 2. Furthermore, preserving intricate text strokes during this
process comes with difficulties. Hence, research dedicated to the binarization of degraded
document images is of paramount importance.

Figure 2. Images highlighting the difficulties of preserving text strokes and addressing significant
degradation. (a) Significantly degraded document images. (b) Ground-truth images. (c) Resulting
images of the model in [5], a traditional binarization algorithm-based method. (d) Resulting images
of the proposed model, a deep learning-based method. The proposed model is effective in preserving
text strokes, even in the case of significant degradation.

Research into document binarization spans several decades. During this time, various
image binarization algorithms [5–7] have emerged, significantly contributing to the bina-
rization of standard, uniform images. Nevertheless, they face limitations when confronted
with the task of distinguishing non-uniform and complex degradation while extracting
detailed text regions in degraded document images [8]. To address these challenges, recent
efforts have turned to deep learning techniques within the realm of computer vision for
document binarization. Methods rooted in deep learning [9–11], including segmentation
and deep neural networks, have gained prominence. For instance, in one model, document
binarization was redefined as a pixel classification problem by applying an FCN (Fully
Convolutional Network) [12]. Additionally, the performance of document binarization was
enhanced by training an iterative neural network, combining existing binary algorithms
with deep learning [8]. Variations of neural network structures have also been proposed
for document binarization. Peng et al. [13] performed document binarization by applying
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multi-resolutional attention to an encoder–decoder network. In [14], a U-Net architecture
with global–local branches was employed, which utilized both the global and local features
of degraded documents. However, these deep neural network models face a challenge in
that they cannot effectively extract both global and local features when applying the same
convolutional filter across the entire image.

More recently, document binarization based on generative adversarial networks
(GANs) has emerged. GANs have been successfully applied to image-to-image tasks
to generate clean, binarized document images from their degraded counterparts [15–18].
Souibgu et al. [17] succeeded in removing watermarks and blur using a conditional GAN
architecture. Also, a two-stage GAN architecture involving document image enhancement
and binarization has been proposed [18]. These deep learning-based approaches have
overcome the limitations of traditional binarization algorithms and exhibited improve-
ments in text-region preservation. Nonetheless, these methods still face the challenge of
extracting intricate text strokes from non-uniform and complex degradation, occasionally
encountering mode collapse [19], which hampers performance due to a focus on specific
data distributions. Specifically, these methods are robust against trained noise but do not
perform well against untrained noise.

To address the aforementioned issues, we propose an innovative approach to docu-
ment binarization using a diffusion-denoising process combined with a gated U-Net. Our
model transmits the probability of the text region as it passes through the layers of the
gated U-Net, ultimately generating high-quality binarized document images through an
iterative diffusion-denoising process.

We present a document binarization model based on the latent diffusion model
(LDM) [20], conceptualizing document binarization as an iterative diffusion-denoising
process, as shown in Figure 3. In essence, this process generates a clean, binarized docu-
ment image by progressively eliminating Gaussian noise with each time step. To achieve
this, we use the diffusion model in [21], which has proven effective in image-generation
tasks. The model operates by introducing and removing Gaussian noise within an image,
and it offers the advantage of reduced reliance on extensive training data, learning to
remove noise by considering both data distribution and time steps. LDMs have further
improved time efficiency and precision in image generation using the diffusion model
within the latent space [20]. By applying an LDM to document binarization, we enhance the
generalization capabilities against unseen noise and finely adjust the text-stroke features
using the latent space. To the best of our knowledge, this is the first study to incorporate an
LDM into document binarization.

Moreover, we integrate a gated convolution into the model’s backbone network to
facilitate intricate text-stroke extraction. Gated convolutions have previously shown their
effectiveness in binary mask learning within segmentation models [22]. In our study, the
gated convolution proves adept at distinguishing between text and background regions
by jointly training features through original convolution and gating values, which encode
text-region information. We use the gated convolution within the latent space rather than
in the pixel space, allowing the proposed model to extract even more detailed text strokes.

To demonstrate the effectiveness of our proposed model, we conduct experiments
using the Handwritten Document Image Binarization Contest (H-DIBCO) and Document
Image Binarization Contest (DIBCO) datasets [23–26]. Our evaluation employs the four
most commonly used metrics in document binarization, and the proposed model outper-
forms existing state-of-the-art methods in all metrics. In summary, our study makes three
significant contributions:

• We propose a novel approach by redefining document binarization as an iterative
diffusion-denoising problem for degraded document images. This is the first study
to incorporate an LDM into document binarization to generate high-quality, clean,
binarized document images.
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• We use a gated convolution in the latent space for the precise extraction of text strokes.
This approach simplifies the differentiation between the text and the background by
continually updating the gating value as a guide for delineating the text region.

• The proposed model produces high-quality, clean, binarized document images and
outperforms existing methods on multiple H-DIBCO datasets.

Figure 3. The architecture of the proposed model for document binarization. The network architecture
can be divided into the pixel space and latent space, and the diffusion-denoising process proceeds
according to the time step in the latent space.

The remainder of this paper is structured as follows. In Section 2, we review some
related works. Section 3 presents the proposed model. Section 4 discusses the experimental
results, and in Section 5, we conclude our study.

2. Related Works
2.1. Document Binarization

Document binarization aims to conduct pixel-wise binary classification of the back-
ground and text within a document image. The methods for document binarization can
be categorized into two main groups: traditional binarization algorithm-based methods
and deep learning-based methods. Traditional binarization algorithms rely on various
nonparametric thresholding techniques. These methods achieve binary classification by
applying a threshold to distinguish between the background and text. Otsu’s method [6],
for instance, uses a global thresholding approach that maximizes the separation between
the background and text, seeking the highest interclass variation for binary classification.
These global thresholding methods have proven effective for document images with uni-
form degradation but may not be well suited for document images with non-uniform
degradation. To address this challenge, pixel-wise local thresholding methods have been
introduced. Local thresholding methods enhance classification accuracy by considering
the relationships between neighboring pixels based on local statistical information [5,7].
Although these algorithm-based binarization methods excel at handling uniform noise, they
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still encounter challenges when dealing with documents containing diverse non-uniform
noise such as overwriting [8].

To address these issues, deep learning-based methods have gained significant attention
recently. An iterative neural network was developed to generate clean, binarized images
from non-uniformly degraded images, and Otsu’s algorithm was applied to enhance the
resulting images [8]. Binarization was achieved by training mid-level representations
through an encoder–decoder architecture composed of convolutional neural networks [27].
This encoder–decoder architecture was also used to construct a network for selective
output [28]. A cascading U-Net architecture was proposed for tackling complex document
image-processing tasks [29]. Akbari et al. [30] leveraged convolutional neural networks
to identify foreground pixels using input-generated multichannel images. Furthermore,
generative models based on GANs, which treat document binarization as an image-to-
image task, have been introduced [31].

Zhao et al. [15] proposed a model for generating clean, binarized images through multi-
scale information fusion based on conditional generative adversarial networks (cGANs).
Additionally, in [17], cGANs were employed, demonstrating performance improvements
in tasks such as watermark removal, deblurring, and binarization. Lin et al. [32] introduced
a three-stage method for binarization by integrating a discrete wavelet transform and
GANs. Lastly, color-independent adversarial networks have been developed in two stages
to capture both the global and local features of documents [18].

2.2. Diffusion Model for Image-to-Image Tasks

Diffusion models have shown remarkable success in image generation and have found
applications in various image-generation tasks [19,21,33]. Rombach et al. [20] harnessed the
power of the diffusion method within the latent space to finely adjust the semantic features
of images, resulting in improved quality of tasks such as inpainting, super-resolution,
and image-to-image transformations. Additionally, diffusion models have been used in
image-segmentation tasks. A distribution of segmentation masks was generated using
a stochastic sampling process [34]. Kim et al. [35] introduced a diffusion adversarial
representation learning model, incorporating switchable spatially adaptive denormalization
for vessel segmentation. Chen et al. [36] used the diffusion process to refine detection-box
proposals in object detection, while another study used the diffusion process for image-
depth estimation [37].

2.3. Gated Convolutions

Gated convolutions have found applications in various tasks, including segmenta-
tion [38,39], inpainting [22], and language modeling [40]. Li et al. [38] introduced the
concept of gated full fusion, which selectively integrates multi-level features using gated
convolutions in a fully connected manner for segmentation. Another study proposed
context-gated convolutions, which dynamically adjust the weights of convolutional layers
based on the global context [41]. Zhang et al. [42] leveraged gated convolutions for vessel
segmentation. Their network learned to accentuate vessel edges using gated convolutions
on features extracted via an encoder–decoder architecture. In [22], a feature selection mech-
anism capable of dynamically learning features for each spatial location was proposed to
address the limitations of vanilla convolutions, which use the same filter for all input pixels.
A gated convolution was used for this dynamic feature selection mechanism, effectively
distinguishing between valid and invalid pixels.

3. Method

We introduce a binarization model for degraded document images through an iterative
diffusion-denoising process. Within this process, we leverage an LDM [20], which learns
data distribution features by iteratively introducing and removing Gaussian noise at each
time step in an image. The iterative diffusion-denoising process operates within the latent
space using a pre-trained autoencoder to generate a clean, binarized document image
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through the autoencoder’s decoder. Additionally, by incorporating a gated convolution
into the denoising process, we enhance text-stroke extraction performance by dynamically
updating the gating value associated with the text regions.

In this section, we first provide an overview of the existing diffusion model in the
preliminaries, followed by an explanation of the architecture of our proposed model. We
then delve into the conditioned denoising process facilitated by the gated U-Net. Finally,
we elucidate the loss function used in our proposed model.

3.1. Preliminaries

Diffusion models [21,33] are probabilistic models that aim to estimate a data distribu-
tion p(x) by iteratively denoising noise from a normally distributed variable. The model
performs several generative tasks via an iterative diffusion-denoising process. In the train-
ing stage, the diffusion model goes through a diffusion process that generates a noise
vector xt by gradually adding Gaussian noise ε during the time step t ∈ [0, T] from data x0.
The diffusion process q(xt | x0) can be formulated as follows:

q(xt | x0) := N (xt |
√

αtx0, (1− αt)I), (1)

where αt is a parameter for the variance schedule and is related to the degree of noise addition.
The denoising process generates a denoising vector xt−1 from a random noise vector xt via
a denoising network. Through this iterative process, x0 is generated. The denoising process
pθ(xt−1 | xt) is as follows:

pθ(xt−1 | xt) := N (xt−1; µθ(xt, t), σ2
t I), (2)

where µθ(xt, t) is a neural network that generates x0 and learns iterative noise removal. σ2
t

is a noise schedule and depends on α. The diffusion model trains the denoising network
εθ(xt, t) with equal weights, and the total loss LDM is formulated as follows:

LDM = Ex0,ε,t

[
‖ε− εθ(xt, t)‖2

2

]
(3)

When sampling x0, x0 is generated using a trained denoising network from the random
noise vector xT .

3.2. Network Architecture

The network architecture of the proposed model is based on the structure of LDMs [20],
as shown in Figure 3. Throughout the training process, an input binarized document image
undergoes conversion into a latent vector within the pixel space, achieved by the encoder
of a pretrained autoencoder. This use of the latent space enables precise adjustments to
the semantic features of the latent vector [20,43,44]. Subsequently, the diffusion process
generates a Gaussian noise vector by incrementally introducing constant Gaussian noise
to the converted latent vector based on the time step. In the denoising phase, the original
latent vector is restored from the random noise vector via an iterative denoising network,
with the damaged document image serving as a conditioning factor. The fully denoised
latent vector is then translated back into a clean, binarized document image in the pixel
space, facilitated by the decoder of the autoencoder. The proposed model is suitable for
high-quality text-region extraction and the removal of noise from damaged document
images, which is achieved through an iterative diffusion-denoising process. Extensive
experiments demonstrate its ability to deliver competitive performance.

3.3. Document Diffusion-Denoising Network
3.3.1. Document Image Compression

The primary process of the proposed model takes place in the latent space rather
than in the pixel space. To use the latent space, the document image in the pixel space
is transformed into a latent vector through the autoencoder. In this process, we use
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VQGAN [44] through vector quantization (VQ) layers. This method compresses a high-
dimensional image vector using an encoder and subsequently reconstructs the compressed
latent vector through a decoder, incorporating a VQ layer to prevent information loss.
In this process, it learns the classification of a codebook that regulates discrete latent vectors
through the VQ layer. That is, by learning |Z|, the number of codebooks, the latent space is
normalized by the VQ layer.

In detail, given an image of x ∈ RH×W×C, the encoder E converts x into the latent
vector z ∈ Rh×w×c, and the decoder D learns the process of restoring z to x̃. H, W, and
C refer to the height, width, and channel of the image vector, and h, w, and c refer to the
height, width, and channel of the compressed latent vector, respectively. VQGAN can
preserve a particular region of an original image in the latent space by normalizing it to
the latent space using the VQ layer. The latent space compression process of the proposed
model reduces image data with dimensions of 256 × 256 and a single channel into a latent
vector with dimensions of 64 × 64 and three channels. Consequently, even if the real image
vector is converted into a latent vector via VQGAN, it is possible to preserve the text,
background, and text boundary region, as shown in Figure 4.

Figure 4. Exemplary images of a latent vector compressed through an autoencoder and image vector
in the pixel space, showing the change in the vector in each space according to the time step.

3.3.2. Diffusion-Denoising Process

We use a diffusion-denoising process to create high-quality, clean, binarized document
images. Initially, within the diffusion process, Gaussian noise is injected into the image’s latent
vector over multiple time steps to form a complete Gaussian noise vector. Subsequently, in the
denoising process, the model undergoes training to progressively eliminate Gaussian noise
from the complete Gaussian noise vector, ultimately producing a clean, binarized document
image. Therefore, during the document binarization inference, the result is exclusively
generated through the trained denoising process, as shown in Figure 5.

Figure 5. Illustration of the architecture of the denoising process. Our denoising network consists
of a gated U-Net, which is a fully gated convolution. The denoising process at a specific time step
passes through a gated U-Net by concatenating the latent vector of the degraded document with the
noise vector of the previous time step.
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The iterative diffusion-denoising process of the proposed model depends on the
diffusion model [21,33] and proceeds according to Equations (1) and (2) in the latent space
to enhance the computational cost and feature control ability, as described in Section 3.3.1.
The diffusion process of the network generates the noise vector zt by gradually adding
the Gaussian noise ε to the latent vector z = E(x) generated by the encoder. Then, in the
denoising process, z0 is restored by gradually removing noise from the noise vector zt
through the gated U-Net architecture, which is known as the denoising network. To achieve
this, the training process involves computing the difference in the distribution of the outputs
from each process at the same time step. The gated U-Net architecture and its corresponding
processes are illustrated in Figure 5.

However, in the case of the unconditional diffusion-denoising process, it is trained
using data that solely comprise binarized document images. As a result, it can generate a
document image following a distribution similar to that of a binarized document image;
however, it cannot restore a degraded document image to a clean, binarized state. For doc-
ument binarization, the model must generate not only a binarized document image but
also a clean, binarized document image when presented with a degraded document image.
Hence, as illustrated in Figure 3, we configure the conditional diffusion-denoising process
by adding degraded document images as a condition. The loss function for training the
denoising network εθ with the condition added is as follows:

LLDM = EE(x),c,ε,t

[
‖ε− εθ(zt, t, E(c))‖2

2

]
(4)

In the document binarization process, during the denoising step, the latent vector E(c)
of the degraded document image c generated by the encoder is concatenated channel-wise
as a condition. Additionally, we implement skip connections to mitigate information loss.
When sampling a cleaned, binarized document image, the latent vector of the degraded
document image is combined with a random noise vector. This noise is progressively
removed through an iteratively trained denoising network, corresponding to the number
of time steps.

3.4. Gated U-Net in the Latent Space

We have designed the denoising network using a gated U-Net architecture that incor-
porates a fully gated convolution to facilitate the detailed extraction and separation of the
text and background regions. The U-Net architecture [10] leverages both the local and global
features by combining the extraction of high-dimensional features with low-dimensional
features through skip connections between the upsampling and downsampling stages.
The gated convolution, as introduced in [22], represents a convolutional operation that
integrates a dynamic feature selection mechanism capable of learning features in each
channel at every spatial location.

In contrast to a traditional convolution, which applies the same filter to all spatial
positions, a gated convolution multiplies each spatial position in the feature map by
a distinct weight, referred to as a gating value. This gating value distinguishes each
position as either valid or invalid. As it traverses through the layer, the gating value places
more emphasis on the text and text boundary regions, assuming values between 0 and 1
depending on each spatial location.

Therefore, by passing the gating value of the feature map calculated in the previous
layer to the next layer, it is possible to continuously provide a guide on the valid location.
In the present study, the valid location means the text and the text boundary regions. In a
specific region (x, y) of a specific channel, the gated convolution can be formulated as
follows:

Gatingx,y = Wg · I, (5)

Featurex,y = W f · I, (6)
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Ox,y = φ(Featurex,y)� σ(Gatingx,y), (7)

where Wg and W f are trainable convolution filters for extracting gating values and features,
respectively, and I refers to an input feature map. σ is the sigmoid function, and φ is
the nonlinear activation function. Therefore, the final output Ox,y is determined through
element-wise multiplication of the value obtained by applying the sigmoid function to the
gating value and the value acquired by applying activation to the extracted feature value.
By applying the sigmoid function to the gating value and subsequently multiplying it with
the original feature, we ascertain the probability of a valid location.

We use this gated convolution method to build a denoising network. Within the
denoising process, we have designed the network to meticulously extract text regions
by incorporating information pertaining to both the text itself and the text boundary re-
gions. The denoising network has a U-Net architecture and uses a gated convolution in the
downsampling and upsampling processes. All downsampling processes involve a gated
convolution, whereas the upsampling process entails upscaling via a scale factor followed
by another downsampling step. Consequently, the denoising network can be conceptual-
ized as a fully gated convolution. Moreover, we use skip connections between upsampling
and downsampling to facilitate information sharing. In the latent space, the gated U-Net
effectively discriminates between the text and background regions, preserving each region
by continuously incorporating trainable gating values as guides.

Maximizing the effectiveness of a gated U-Net, comprising a fully gated convolution
solely through the loss of existing diffusion models that provide training guidance based on
the distribution of the latent vector, can be challenging. Hence, we introduce a pixel-level
loss (Lpix) to enhance text-region extraction and facilitate effective updating of the gating
values. Lpix calculates the disparity between the output of the decoder at a specific time
step and the ground truth in the pixel space. We incorporate two noteworthy pixel-level
losses to refine the difference between ŷ, the output of the denoising network, and the
ground truth y at a specific time step. The first is the binary cross-entropy loss for binary
value classification at the pixel level. The second is the dice loss, which measures the
similarity between the model’s predicted region and the ground-truth region. Through this,
Lpix between the predicted pixel ŷ and the ground-truth pixel y is configured as follows,
and Lpix can be formulated using Equation (10):

Lbce = −ylog(ŷ)− (1− y)log(1− ŷ), (8)

Ldice = 1− 2yŷ
y + ŷ

, (9)

Lpix = Lbce + Ldice (10)

The proposed model is trained to minimize Ltotal , a weighted sum of LLDM and Lpix.

Ltotal = LLDM + λLpix (11)

The network is updated according to Equation (11). However, since the pixel-level loss
can be less effective at a lower time step, λ is set as a penalty depending on the time step.

4. Experiments and Results
4.1. Dataset and Implementation Details

We built a new training dataset by combining several existing document binarization
datasets to evaluate and compare the performance of our proposed model against other
methods. The training dataset comprised images from H-DIBCO [45–47], DIBCO [48–50],
the Bickley diary dataset [51], the Persian heritage image binarization (PHIDB) dataset [52],
and the Synchromedia Multispectral (S-MS) dataset [53]. Given that most of the document
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images were of substantial size, we patchified each image into 256× 256 patches to enhance
training efficiency. To diversify the dataset, we applied random rotation augmentation
to the segmented patches, resulting in a dataset totaling approximately 160,000 images.
For training purposes, 90% of the constructed dataset was allocated for training and the
remaining 10% was reserved for validation. For evaluation, we used H-DIBCO 2016 [23],
DIBCO 2017 [24], H-DIBCO 2018 [25], and DIBCO 2019-B [26]. These datasets comprise
10–20 document images, each subjected to various levels of general noise, with dimensions
typically exceeding 1000 × 1000 pixels. Additionally, we incorporated DIBCO 2019-B,
encompassing 10 images featuring novel noise characteristics that the model had not
previously encountered. Notably, the test dataset was not included in the training and
validation set.

To train the proposed model, the time step of the diffusion-denoising process was
set to 1000, and the AdamW optimizer [54], with an initial learning rate of lr = 1× 10−6,
was used. Furthermore, the autoencoder was pre-trained with an 8192-sized codebook
at a learning rate of lr = 4.5× 10−6 over 20 epochs for the training set and was frozen
during denoising network training. During the diffusion-denoising process, the latent
space was utilized through the 8192-sized codebook of the pre-trained autoencoder. We
used LeakyReLU as the network’s activation function. The denoising network underwent
training for about 1M steps with a batch size of 2. We used three NVIDIA RTX 3090 GPUs
(24GB) for training. The network consisted of 590M parameters, and the model inference
was carried out with 12GB of VRAM.

4.2. Evaluation Metrics

For the quantitative evaluation of the proposed model, four evaluation metrics [23–26]
suitable for document binarization evaluation were selected. The metrics included the F-
measure (FM), pseudo-F-measure (pFM), Peak Signal-to-Noise Ratio (PSNR), and distance
Reciprocal Distortion (DRD), commonly used in DIBCO. The results of the proposed model
and existing models were compared with the ground-truth binarized images to calculate
the selected metrics.

The FM is calculated using the precision and recall between the predicted pixel and
the ground-truth pixel as follows:

FM =
2× Precision× Recall

Precision + Recall
(12)

The pFM, proposed in [55], and the stroke predicted through the pseudo-Recall
(pRecall) representing the percentage of the skeletonized ground-truth image and the
stroke of the ground-truth image, is calculated as follows:

pFM =
2× Precision× pRecall

Precision + pRecall
(13)

The PSNR is an image quality evaluation metric and is calculated for the similarity
between the predicted and ground-truth images. The PSNR is calculated as follows, where
C is the maximum value of an image pixel:

PSNR = 10 log
C2

MSE
(14)

The DRD is a metric used to measure the visual distortion in binary document im-
ages [56]. It measures the distortion for all the S-flipped pixels as follows:

DRD =

S
∑

k=1
DRDk

NUBN
, (15)
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where NUBN is the number of non-uniform (not all black or white pixels) 8 × 8 blocks in the
ground-truth image, and DRDk is the distortion of the k-th flipped pixel, as defined in [56].

4.3. Quantitative and Qualitative Comparison

To demonstrate the performance and effectiveness of the proposed model, we con-
ducted evaluations using a total of four benchmark datasets. The DIBCO 2016, DIBCO
2017, and DIBCO 2018 datasets comprise machine-printed and handwritten document
images, and DIBCO 2019-B presents a challenging benchmark dataset featuring papyrus-
like materials and extreme degradation. For our evaluations, we used four established
metrics—FM, pFM, PSNR, and DRD—as introduced in Section 4.2. Furthermore, to en-
sure a fair comparison, we reimplemented eight models, including our proposed model.
These reimplementations were based on publicly available source code provided by the
respective authors. The compared methods encompassed both traditional binarization
algorithm-based approaches and deep learning-based methods. Among the binariza-
tion algorithm-based methods were those by Otsu [6] and Sauvola [5], whereas the deep
learning-based methods included SAE [28], cGANs [15], and those by Akbari et al. [30],
Souibgui et al. [17], and Suh et al. [18]. As our proposed model falls within the category of
generative models, we compared it with various other generative models. Additionally, we
incorporated the performance of the competition winners from each respective year [23–26]
into our experimental results.

Table 1 shows the quantitative evaluation results of the models. Compared with other
methods, the proposed model achieved the best performance for the mean values on all
datasets. The proposed model demonstrated performance improvements of 0.08 in the FM,
1.81 in the pFM, 0.29 in the PSNR, and 0.89 in the DRD compared to the existing method [18],
which demonstrated the second-highest performance. The performance improvements
across all the metrics used to assess image quality and text-region preservation on DIBCO
(the international competition on Document Image Binarization [26]) showed that the
proposed method was effective in document binarization.

Table 1. Comparison of the proposed model with other methods on the (H-)DIBCO dataset. The last
row shows the results of the mean values on the four datasets. The best performance is indicated in
bold, and the second-highest performance is underlined.

Dataset Metric
Otsu

[6]
Sauvola

[5]
Competition

Winner
SAE
[28]

cGANs
[15]

Akbari
[30]

Souibgui
[17]

Suh
[18] Ours

2016

FM 86.64 79.57 88.72 88.11 91.67 90.48 84.45 91.11 88.95
pFM 89.99 86.84 91.84 91.55 94.59 93.26 84.73 95.22 95.45

PSNR 17.80 16.90 18.45 18.21 19.64 19.27 16.18 19.34 19.38
DRD 5.52 6.76 3.86 4.51 2.82 3.94 7.25 3.25 3.74

2017

FM 80.63 73.86 91.04 85.72 90.73 85.59 80.63 89.33 89.36
pFM 80.85 84.78 92.86 87.85 92.58 87.56 80.85 91.41 94.02

PSNR 13.84 14.30 18.28 16.09 17.83 16.39 13.84 17.91 18.33
DRD 9.85 8.30 3.40 6.53 3.58 7.99 9.85 3.83 3.83

2018

FM 51.56 64.04 88.34 75.77 87.73 76.51 77.59 91.86 88.43
pFM 53.58 72.13 90.24 77.95 90.60 80.09 85.74 96.25 93.73

PSNR 9.76 13.98 19.11 14.79 18.37 17.01 16.16 20.03 19.28
DRD 59.07 13.96 4.92 13.30 4.58 8.11 7.93 2.60 3.95

2019-B

FM 22.47 50.57 67.99 47.57 61.64 47.00 49.83 66.83 72.71
pFM 22.47 54.48 67.88 48.55 62.52 47.60 49.97 68.32 75.24

PSNR 2.61 10.85 12.14 10.84 11.77 9.18 8.55 12.91 14.37
DRD 213.58 33.73 26.87 32.00 24.11 70.50 53.18 19.80 14.39

Mean
Values

FM 59.61 67.01 84.02 74.29 82.94 74.90 71.64 84.78 84.86
pFM 61.53 74.56 85.71 76.47 85.07 77.13 71.85 87.80 89.61

PSNR 11.01 14.01 17.00 14.98 16.90 15.46 12.86 17.55 17.84
DRD 73.42 15.69 9.76 14.09 8.77 22.65 23.43 7.37 6.48
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The proposed model achieved the best or second-best performance in terms of the pFM
and PSNR on all four datasets. Particularly, on the DIBCO 2019-B dataset, which consists
of the most complex noise that the model has not yet experienced, the proposed model
achieved the best performance across all metrics. In particular, the existing methods showed
great decrement, whereas the proposed model showed impressive performance gains
compared to the other models, even when faced with such significant noise. Although the
quantitative differences between the proposed model and the other models were marginal
on the other datasets, the qualitative evaluation demonstrated that the proposed model
performed better in document binarization compared to the other models. Therefore, it
demonstrated that training through the iterative diffusion-denoising process was effective
in removing complex noise and robust to various environments.

First, the proposed model delivered outstanding results across multiple benchmark
datasets. In the H-DIBCO 2016 dataset, our model attained the highest performance in
the pFM and the second-highest performance in the PSNR. The exceptional performance
in the pFM underscores its superior ability to extract text strokes compared to the other
methods, whereas the strong performance in the PSNR reflects the high quality of its results.
Regarding the DIBCO 2017 dataset, our proposed model again took the lead, demonstrating
the highest performance in both the pFM and PSNR. On the H-DIBCO 2018 dataset, our
model achieved the second-highest performance across all four metrics. On the challenging
DIBCO 2019-B dataset, which features images with extreme degradation on materials such
as papyrus and tree bark, the proposed model outperformed all the others, achieving
significantly superior results across all four metrics. This success is particularly noteworthy,
as the other models struggled to perform well on this dataset, illustrating the effectiveness
of our proposed model in extracting text strokes, even from extremely degraded document
images it had not been explicitly trained on. When we consider the average results across
the DIBCO 2016, 2017, 2018, and 2019-B datasets, it becomes evident that the proposed
model consistently outperformed the other models across all of the metrics. This showcases
the effectiveness of our model in terms of image generation through the diffusion-denoising
process and text-stroke extraction via the gated U-Net.

The qualitative evaluation of the H-DIBCO 2016 dataset is shown in Figure 6. The
figure depicts the most challenging document image with complex degradation from the
H-DIBCO 2016 dataset. Figure 6g, the resulting image using the method in [15], shows
the highest quantitative result, but with limitations in preserving elaborate text strokes.
Figure 6i, the resulting image using the method in [18], shows better results in preserving
text strokes, but with limitations in removing noise. Figure 6j, the resulting image using
the proposed model, shows that it not only achieved better results in noise removal such
as overwriting compared to the other methods, but also performed the best in preserving
elaborate and accurate text strokes.

Figure 7 depicts an image from the DIBCO 2017 dataset, used for qualitative evaluation.
This image contains noise, making it challenging to differentiate between the text and the
background. Traditional algorithm-based methods often misclassify such noise as text.
Similarly, deep learning-based methods face difficulties in scenarios with significant noise
due to similarities in shape, size, and text stroke. However, in Figure 7j, we can see how the
proposed model adeptly discerned between the background and text regions, showcasing
its effectiveness in challenging scenarios.
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Figure 6. Binarization results of a sample image from the H-DIBCO 2016 dataset. (a) Degraded
image, (b) ground-truth image, (c) Otsu [6], (d) Sauvola [5], (e) SAE [28], (f) Souibgui et al. [17],
(g) cGANs [15], (h) Akbari et al. [30], (i) Suh et al. [18], and (j) the proposed model.

Figure 8 depicts an image from the H-DIBCO 2018 dataset. This dataset comprises 10
handwritten document images with diverse degradations, including variations in back-
ground intensity, shadows, and ink smearing. The figure illustrates the challenges posed
by variable background intensities and ink smearing. Other methods struggled to effec-
tively eliminate these degradations. Although Figure 8g, an outcome from a previous
method [15], mitigates some of the degradations, the method encountered difficulties in
preserving intricate text strokes, such as small footnotes, within the document. In contrast,
in Figure 8i, the proposed model is shown to excel in resolving various degradation types
and preserving elaborate text strokes.

Figure 7. Binarization results of a sample image from the DIBCO 2017 dataset. (a) Degraded
image, (b) ground-truth image, (c) Otsu [6], (d) Sauvola [5], (e) SAE [28], (f) Souibgui et al. [17],
(g) cGANs [15], (h) Akbari et al. [30], (i) Suh et al. [18], and (j) the proposed model.

Figure 9 showcases an image from the DIBCO 2019-B dataset, which comprises ancient
document images featuring a range of papyrus qualities, ink characteristics, and hand-
writing styles. This dataset presents a formidable challenge due to its non-homogeneous
properties such as resolution, lighting, and noise variations. Figure 9c,d, correspond to the
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results using the methods in [15,18], which encountered difficulties in effectively distin-
guishing the text from the background due to the intensity. Consequently, preserving text
strokes was exceptionally challenging. In contrast, Figure 9e highlights the effectiveness
of the proposed model in classifying the text and background regions while successfully
preserving the text areas. Notably, the degradation types found in the DIBCO 2019-B
dataset extended beyond those encountered in the training data, underscoring the pro-
posed model’s effectiveness in addressing even significant degradation.

Furthermore, Figure 10 illustrates the effectiveness of the proposed model in ex-
tracting detailed regions. Distinguishing between the background and text regions and
accurately capturing intricate text strokes in small portions, as demonstrated in the sample
image, can be challenging. In such cases, even methods with relatively high quantitative
evaluations [15,18,30] encountered difficulties in precisely extracting and preserving text
regions, as evident in Figure 10c–e. However, the proposed model, as shown in Figure 10f,
successfully extracted and preserved precise text strokes despite these challenges.

Figure 8. Binarization results of a sample image from the H-DIBCO 2018 dataset. (a) Degraded image,
(b) ground-truth image, (c) Otsu [6], (d) Sauvola [5], (e) SAE [28], (f) cGANs [15], (g) Akbari et al. [30],
(h) Suh et al. [18], and (i) the proposed model.
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Figure 9. Binarization results of challenging images from the DIBCO 2019-B dataset. (a) Degraded
image, (b) ground-truth image, (c) cGANs [15], (d) Suh et al. [18], and (e) the proposed model.

Figure 10. Binarization results of small text with degradation. (a) Degraded image, (b) ground-truth
image, (c) cGANs [15], (d) Akbari et al. [30], (e) Suh et al. [18], (f) the proposed model. The proposed
model could effectively preserve the text region, even for small text.

4.4. Ablation Study

We conducted ablation experiments to assess each component of the proposed model.
For evaluation purposes, we employed the DIBCO 2016 benchmark dataset and demon-
strated the effectiveness of the proposed model using the four metrics outlined in Section 4.2.
The baseline reference was [20], and the diffusion-denoising process was executed in the
latent space using an autoencoder. We compared the baseline with the proposed gated
U-Net and pixel-level loss individually, as well as models incorporating all of these com-
ponents. In total, we compared four models, conducting experiments under identical
implementation settings except for the inclusion or exclusion of specific components within
each model.

Table 2 shows the results of the baseline, proposed model without Lpix, proposed
model without gated U-Net, and proposed model. When the gated U-Net was added to the
baseline, the pFM (95.03) improved by 0.59 compared to the baseline (94.44). Text-stroke
preservation performance was improved because filter training for the gating values was
additionally included. However, when the pixel-level loss was not included, the feedback
for the gated convolution filter was not effective; thus, there were no significant performance
improvements. When the gated convolution was omitted, both the text and background
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regions were updated solely through the pixel-level loss, leading to an improvement in
performance across all metrics. Specifically, in the case of the proposed model with the
pixel-level loss incorporated to train the gated convolution filter in the gated U-Net, we
observed improvements in the FM, pFM, PSNR, and DRD of 0.68, 1.00, 0.28, and 0.31,
respectively, compared to the baseline. This highlights the effectiveness of each individual
component in the proposed model, and it also underscores the synergy of all components
working together to achieve performance gains.

Furthermore, to assess the impact of each component, we present the results of model
training after six epochs in Table 3. We used the FM to evaluate the accuracy of the pixel-
wise predictions for the text and background, along with the pFM to assess predictions at a
regional level. When excluding the pixel-level loss from the proposed model, each metric
remained comparable to or slightly improved upon the baseline performance. For the
proposed model without the gated U-Net, which used the baseline’s backbone network
with an LDM and pixel-level loss to update the denoising network, we observed significant
improvements in the FM of 8.00 and the pFM of 7.94 compared to the baseline. Conversely,
the proposed model using the gated U-Net for document binarization and the pixel-level
loss to facilitate the training of the gating values achieved the highest performance across
all metrics, where the FM increased by 8.22 and the pFM increased by 8.51 compared to
the baseline. These outcomes underscore the effectiveness of the individual components in
the proposed model, particularly in terms of preserving and extracting text strokes.

Table 2. The results of the ablation study on the H-DIBCO 2016 dataset. Best performance is indicated
in bold.

H-DIBCO 2016 FM pFM PSNR DRD

Baseline 88.25 94.44 19.09 4.05
Ours w/o Lpix 88.13 95.03 19.08 4.05

Ours w/o Gated U-Net 88.48 95.03 19.08 3.93
Ours 88.93 95.44 19.37 3.74

Table 3. Results of the ablation study on the H-DIBCO 2016 dataset after training for 6 epochs.
The best performance is indicated in bold.

H-DIBCO 2016/epoch 6 FM pFM

Baseline 77.93 85.66
Ours w/o Lpix 79.53 85.84

Ours w/o Gated U-Net 85.93 93.60
Ours 86.15 94.17

Figure 11 shows the resulting images using the baseline, the proposed model without
Lpix, the proposed model without the gated U-Net, and the proposed model. As shown
in Figure 11f, the proposed model with both Lpix and the gated U-Net was successful in
distinguishing between the text and background of degraded document images compared
to the baseline shown in Figure 11c.

Furthermore, in Figure 12, the excellent text-stroke preservation performance can be
qualitatively confirmed. In Figure 12f, which demonstrates the results of the proposed
model, noise removal and text-stroke preservation are more accurate and precise compared
to the baseline shown in Figure 12c. This proves that the diffusion-denoising process
through the gated U-Net and Lpix was effective in preserving more elaborate text strokes
and generating high-quality results.
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Figure 11. Binarization results of a sample image from DIBCO 2016. (a) Degraded image, (b) ground-
truth image, (c) baseline, (d) our model w/o Lpix, (e) our model w/o gated U-Net, and (f) our model.

Figure 12. Binarization results of a sample image to confirm the effect of preserving the text region
from DIBCO 2016. (a) Degraded image, (b) ground-truth image, (c) baseline, (d) our model w/o Lpix,
(e) our model w/o gated U-Net, and (f) our model.

5. Conclusions

In this paper, we introduce a novel document binarization model rooted in LDMs that
offers intricate text-stroke extraction and robustness against unanticipated degradation.
For the first time, we use the diffusion-denoising process within the latent space to produce
high-quality, clean, binarized document images. Furthermore, our denoising network takes
the form of a gated U-Net, incorporating a fully gated convolution to safeguard text strokes
in significantly degraded document images. Within this framework, we introduce a filter to
update the gating values, ensuring the preservation of text regions. Using a pixel-level loss
to dynamically update the filter for the gating values, we effectively safeguard text strokes,
even in highly degraded images. Our extensive experiments on challenging benchmark
datasets validate the effectiveness of our proposed model. Quantitative experimental
results affirm the remarkable performance enhancements achieved by the proposed model
in text-stroke preservation and extraction, particularly when compared to existing methods
on the H-DIBCO datasets. Through diverse qualitative evaluations, we demonstrate
how our model effectively overcomes the limitations of existing approaches and adeptly
accomplishes text and background classification tasks. However, as illustrated in Figure 9,
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we acknowledge that our model cannot achieve flawless binarization performance in
scenarios featuring untrained noise. In future work, we anticipate that research focusing on
data generalization will address these challenges, ultimately rendering our model adaptable
to various tasks that rely on binary masks.
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