Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = degenerins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9376 KiB  
Review
Acid-Sensing Ion Channel 2: Function and Modulation
by Andy Sivils, Felix Yang, John Q. Wang and Xiang-Ping Chu
Membranes 2022, 12(2), 113; https://doi.org/10.3390/membranes12020113 - 19 Jan 2022
Cited by 10 | Viewed by 7412
Abstract
Acid-sensing ion channels (ASICs) have an important influence on human physiology and pathology. They are members of the degenerin/epithelial sodium channel family. Four genes encode at least six subunits, which combine to form a variety of homotrimers and heterotrimers. Of these, ASIC1a homotrimers [...] Read more.
Acid-sensing ion channels (ASICs) have an important influence on human physiology and pathology. They are members of the degenerin/epithelial sodium channel family. Four genes encode at least six subunits, which combine to form a variety of homotrimers and heterotrimers. Of these, ASIC1a homotrimers and ASIC1a/2 heterotrimers are most widely expressed in the central nervous system (CNS). Investigations into the function of ASIC1a in the CNS have revealed a wealth of information, culminating in multiple contemporary reviews. The lesser-studied ASIC2 subunits are in need of examination. This review will focus on ASIC2 in health and disease, with discussions of its role in modulating ASIC function, synaptic targeting, cardiovascular responses, and pharmacology, while exploring evidence of its influence in pathologies such as ischemic brain injury, multiple sclerosis, epilepsy, migraines, drug addiction, etc. This information substantiates the ASIC2 protein as a potential therapeutic target for various neurological, psychological, and cerebrovascular diseases. Full article
(This article belongs to the Special Issue Membrane Channel of Cells)
Show Figures

Figure 1

22 pages, 2293 KiB  
Review
Ion Selectivity in the ENaC/DEG Family: A Systematic Review with Supporting Analysis
by Cédric Vallée, Brendan Howlin and Rebecca Lewis
Int. J. Mol. Sci. 2021, 22(20), 10998; https://doi.org/10.3390/ijms222010998 - 12 Oct 2021
Cited by 7 | Viewed by 3412
Abstract
The Epithelial Sodium Channel/Degenerin (ENaC/DEG) family is a superfamily of sodium-selective channels that play diverse and important physiological roles in a wide variety of animal species. Despite their differences, they share a high homology in the pore region in which the ion discrimination [...] Read more.
The Epithelial Sodium Channel/Degenerin (ENaC/DEG) family is a superfamily of sodium-selective channels that play diverse and important physiological roles in a wide variety of animal species. Despite their differences, they share a high homology in the pore region in which the ion discrimination takes place. Although ion selectivity has been studied for decades, the mechanisms underlying this selectivity for trimeric channels, and particularly for the ENaC/DEG family, are still poorly understood. This systematic review follows PRISMA guidelines and aims to determine the main components that govern ion selectivity in the ENaC/DEG family. In total, 27 papers from three online databases were included according to specific exclusion and inclusion criteria. It was found that the G/SxS selectivity filter (glycine/serine, non-conserved residue, serine) and other well conserved residues play a crucial role in ion selectivity. Depending on the ion type, residues with different properties are involved in ion permeability. For lithium against sodium, aromatic residues upstream of the selectivity filter seem to be important, whereas for sodium against potassium, negatively charged residues downstream of the selectivity filter seem to be important. This review provides new perspectives for further studies to unravel the mechanisms of ion selectivity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

16 pages, 1211 KiB  
Review
Acid-Sensing Ion Channels and Mechanosensation
by Nina Ruan, Jacob Tribble, Andrew M. Peterson, Qian Jiang, John Q. Wang and Xiang-Ping Chu
Int. J. Mol. Sci. 2021, 22(9), 4810; https://doi.org/10.3390/ijms22094810 - 1 May 2021
Cited by 48 | Viewed by 6368
Abstract
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in [...] Read more.
Acid-sensing ion channels (ASICs) are mainly proton-gated cation channels that are activated by pH drops and nonproton ligands. They are part of the degenerin/epithelial sodium channel superfamily due to their sodium permeability. Predominantly expressed in the central nervous system, ASICs are involved in synaptic plasticity, learning/memory, and fear conditioning. These channels have also been implicated in multiple disease conditions, including ischemic brain injury, multiple sclerosis, Alzheimer’s disease, and drug addiction. Recent research has illustrated the involvement of ASICs in mechanosensation. Mechanosensation is a form of signal transduction in which mechanical forces are converted into neuronal signals. Specific mechanosensitive functions have been elucidated in functional ASIC1a, ASIC1b, ASIC2a, and ASIC3. The implications of mechanosensation in ASICs indicate their subsequent involvement in functions such as maintaining blood pressure, modulating the gastrointestinal function, and bladder micturition, and contributing to nociception. The underlying mechanism of ASIC mechanosensation is the tether-gate model, which uses a gating-spring mechanism to activate ASIC responses. Further understanding of the mechanism of ASICs will help in treatments for ASIC-related pathologies. Along with the well-known chemosensitive functions of ASICs, emerging evidence has revealed that mechanosensitive functions of ASICs are important for maintaining homeostasis and contribute to various disease conditions. Full article
(This article belongs to the Special Issue Mechanosensitive Ion Channels in Health and Disease)
Show Figures

Figure 1

13 pages, 3862 KiB  
Article
Enhanced Shear Force Responsiveness of Epithelial Na+ Channel’s (ENaC) δ Subunit Following the Insertion of N-Glycosylation Motifs Relies on the Extracellular Matrix
by Daniel Barth, Fenja Knoepp and Martin Fronius
Int. J. Mol. Sci. 2021, 22(5), 2500; https://doi.org/10.3390/ijms22052500 - 2 Mar 2021
Cited by 7 | Viewed by 2775
Abstract
Members of the Degenerin/epithelial Na+ channel (ENaC) protein family and the extracellular cell matrix (ECM) form a mechanosensitive complex. A core feature of this complex are tethers, which connect the channel with the ECM, however, knowledge about the nature of these tethers [...] Read more.
Members of the Degenerin/epithelial Na+ channel (ENaC) protein family and the extracellular cell matrix (ECM) form a mechanosensitive complex. A core feature of this complex are tethers, which connect the channel with the ECM, however, knowledge about the nature of these tethers is scarce. N-glycans of α ENaC were recently identified as potential tethers but whether N-glycans serve as a ubiquitous feature for mechanosensation processes remains unresolved. The purpose of this study was to reveal whether the addition of N-glycans to δ ENaC—which is less responsive to shear force (SF)—increases its SF-responsiveness and whether this relies on a linkage to the ECM. Therefore, N-glycosylation motifs were introduced via site-directed mutagenesis, the resulting proteins expressed with β and γ ENaC in Xenopus oocytes, and SF-activated currents measured by two-electrode voltage-clamp. The insertion of N-glycosylation motifs increases δ ENaC’s SF responsiveness. The inclusion of a glycosylated asparagine (N) at position 487 did increase the molecular mass and provided a channel whose SF response was abolished following ECM degradation via hyaluronidase. This indicates that the addition of N-glycans improves SF-responsiveness and that this effect relies on an intact ECM. These findings further support the role of N-glycans as tethers for mechanotransduction. Full article
(This article belongs to the Special Issue Mechanosensitive Ion Channels in Health and Disease)
Show Figures

Figure 1

17 pages, 1969 KiB  
Review
Peripheral Mechanobiology of Touch—Studies on Vertebrate Cutaneous Sensory Corpuscles
by Ramón Cobo, Jorge García-Piqueras, Yolanda García-Mesa, Jorge Feito, Olivia García-Suárez and Jose A Vega
Int. J. Mol. Sci. 2020, 21(17), 6221; https://doi.org/10.3390/ijms21176221 - 27 Aug 2020
Cited by 29 | Viewed by 10852
Abstract
The vertebrate skin contains sensory corpuscles that are receptors for different qualities of mechanosensitivity like light brush, touch, pressure, stretch or vibration. These specialized sensory organs are linked anatomically and functionally to mechanosensory neurons, which function as low-threshold mechanoreceptors connected to peripheral skin [...] Read more.
The vertebrate skin contains sensory corpuscles that are receptors for different qualities of mechanosensitivity like light brush, touch, pressure, stretch or vibration. These specialized sensory organs are linked anatomically and functionally to mechanosensory neurons, which function as low-threshold mechanoreceptors connected to peripheral skin through Aβ nerve fibers. Furthermore, low-threshold mechanoreceptors associated with Aδ and C nerve fibers have been identified in hairy skin. The process of mechanotransduction requires the conversion of a mechanical stimulus into electrical signals (action potentials) through the activation of mechanosensible ion channels present both in the axon and the periaxonal cells of sensory corpuscles (i.e., Schwann-, endoneurial- and perineurial-related cells). Most of those putative ion channels belong to the degenerin/epithelial sodium channel (especially the family of acid-sensing ion channels), the transient receptor potential channel superfamilies, and the Piezo family. This review updates the current data about the occurrence and distribution of putative mechanosensitive ion channels in cutaneous mechanoreceptors including primary sensory neurons and sensory corpuscles. Full article
(This article belongs to the Special Issue Mechanobiology in Cells and Tissues)
Show Figures

Figure 1

13 pages, 2329 KiB  
Article
Interleukin-17 Reduces βENaC via MAPK Signaling in Vascular Smooth Muscle Cells
by Jeremy W. Duncan, Joey P. Granger, Michael J. Ryan and Heather A. Drummond
Int. J. Mol. Sci. 2020, 21(8), 2953; https://doi.org/10.3390/ijms21082953 - 22 Apr 2020
Cited by 6 | Viewed by 2639
Abstract
Degenerin proteins, such as the beta epithelial Na+ channel (βENaC), are essential in the intracellular signaling of pressure-induced constriction, an important vascular smooth muscle cell (VSMC) function. While certain cytokines reduce ENaC protein in epithelial tissue, it is unknown if interleukin-17 (IL-17), [...] Read more.
Degenerin proteins, such as the beta epithelial Na+ channel (βENaC), are essential in the intracellular signaling of pressure-induced constriction, an important vascular smooth muscle cell (VSMC) function. While certain cytokines reduce ENaC protein in epithelial tissue, it is unknown if interleukin-17 (IL-17), a potent pro-inflammatory cytokine, directly mediates changes in membrane-associated βENaC in VSMCs. Therefore, we tested the hypothesis that exposure to IL-17 reduces βENaC in VSMCs through canonical mitogen-activated protein kinase (MAPK) signaling pathways. We treated cultured rat VSMCs (A10 cell line) with IL-17 (1–100 ng/mL) for 15 min to 16 h and measured expression of βENaC, p38MAPK, c-jun kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). IL-17 reduced βENaC protein expression in a concentration-dependent fashion and increased phosphorylation of p38MAPK by 15 min and JNK by 8 h. NFκB was unaffected by IL-17 in VSMCs. IL-17 treatment reduced VSMC viability but had no effect on cell death. To determine the underlying signaling pathway involved in this response, VSMCs were treated before and during IL-17 exposure with p38MAPK or JNK inhibitors. We found that JNK blockade prevented IL-17-mediated βENaC protein suppression. These data demonstrate that the pro-inflammatory cytokine IL-17 regulates VSMC βENaC via canonical MAPK signaling pathways, raising the possibility that βENaC-mediated loss of VSMC function may occur in inflammatory disorders. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop