Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = defect WS2 chemical sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6856 KB  
Article
Highly Sensitive and Selective Defect WS2 Chemical Sensor for Detecting HCHO Toxic Gases
by Zhen Cui, Hanxiao Wang, Kunqi Yang, Yang Shen, Ke Qin, Pei Yuan and Enling Li
Sensors 2024, 24(3), 762; https://doi.org/10.3390/s24030762 - 24 Jan 2024
Cited by 44 | Viewed by 2857
Abstract
The gas sensitivity of the W defect in WS2 (VW/WS2) to five toxic gases—HCHO, CH4, CH3HO, CH3OH, and CH3CH3—has been examined in this article. These five gases were [...] Read more.
The gas sensitivity of the W defect in WS2 (VW/WS2) to five toxic gases—HCHO, CH4, CH3HO, CH3OH, and CH3CH3—has been examined in this article. These five gases were adsorbed on the VW/WS2 surface, and the band, density of state (DOS), charge density difference (CDD), work function (W), current–voltage (I–V) characteristic, and sensitivity of adsorption systems were determined. Interestingly, for HCHO-VW/WS2, the energy level contribution of HCHO is closer to the Fermi level, the charge transfer (B) is the largest (0.104 e), the increase in W is more obvious than other adsorption systems, the slope of the I–V characteristic changes more obviously, and the calculated sensitivity is the highest. To sum up, VW/WS2 is more sensitive to HCHO. In conclusion, VW/WS2 has a great deal of promise for producing HCHO chemical sensors due to its high sensitivity and selectivity for HCHO, which can aid in the precise and efficient detection of toxic gases. Full article
(This article belongs to the Special Issue Chemical Sensors for Toxic Chemical Detection)
Show Figures

Figure 1

17 pages, 4297 KB  
Article
Hydrogen Sensing Mechanism of WS2 Gas Sensors Analyzed with DFT and NAP-XPS
by Tomoya Minezaki, Peter Krüger, Fatima Ezahra Annanouch, Juan Casanova-Cháfer, Aanchal Alagh, Ignacio J. Villar-Garcia, Virginia Pérez-Dieste, Eduard Llobet and Carla Bittencourt
Sensors 2023, 23(10), 4623; https://doi.org/10.3390/s23104623 - 10 May 2023
Cited by 19 | Viewed by 4821
Abstract
Nanostructured tungsten disulfide (WS2) is one of the most promising candidates for being used as active nanomaterial in chemiresistive gas sensors, as it responds to hydrogen gas at room temperature. This study analyzes the hydrogen sensing mechanism of a nanostructured WS [...] Read more.
Nanostructured tungsten disulfide (WS2) is one of the most promising candidates for being used as active nanomaterial in chemiresistive gas sensors, as it responds to hydrogen gas at room temperature. This study analyzes the hydrogen sensing mechanism of a nanostructured WS2 layer using near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and density functional theory (DFT). The W 4f and S 2p NAP-XPS spectra suggest that hydrogen makes physisorption on the WS2 active surface at room temperature and chemisorption on tungsten atoms at temperatures above 150 °C. DFT calculations show that a hydrogen molecule physically adsorbs on the defect-free WS2 monolayer, while it splits and makes chemical bonds with the nearest tungsten atoms on the sulfur point defect. The hydrogen adsorption on the sulfur defect causes a large charge transfer from the WS2 monolayer to the adsorbed hydrogen. In addition, it decreases the intensity of the in-gap state, which is generated by the sulfur point defect. Furthermore, the calculations explain the increase in the resistance of the gas sensor when hydrogen interacts with the WS2 active layer. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

Back to TopTop