Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = deep learning for agronomy applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 944 KB  
Review
Algorithms for Plant Monitoring Applications: A Comprehensive Review
by Giovanni Paolo Colucci, Paola Battilani, Marco Camardo Leggieri and Daniele Trinchero
Algorithms 2025, 18(2), 84; https://doi.org/10.3390/a18020084 - 5 Feb 2025
Cited by 2 | Viewed by 3265
Abstract
Many sciences exploit algorithms in a large variety of applications. In agronomy, large amounts of agricultural data are handled by adopting procedures for optimization, clustering, or automatic learning. In this particular field, the number of scientific papers has significantly increased in recent years, [...] Read more.
Many sciences exploit algorithms in a large variety of applications. In agronomy, large amounts of agricultural data are handled by adopting procedures for optimization, clustering, or automatic learning. In this particular field, the number of scientific papers has significantly increased in recent years, triggered by scientists using artificial intelligence, comprising deep learning and machine learning methods or bots, to process field, crop, plant, or leaf images. Moreover, many other examples can be found, with different algorithms applied to plant diseases and phenology. This paper reviews the publications which have appeared in the past three years, analyzing the algorithms used and classifying the agronomic aims and the crops to which the methods are applied. Starting from a broad selection of 6060 papers, we subsequently refined the search, reducing the number to 358 research articles and 30 comprehensive reviews. By summarizing the advantages of applying algorithms to agronomic analyses, we propose a guide to farming practitioners, agronomists, researchers, and policymakers regarding best practices, challenges, and visions to counteract the effects of climate change, promoting a transition towards more sustainable, productive, and cost-effective farming and encouraging the introduction of smart technologies. Full article
(This article belongs to the Special Issue Visual Attributes in Computer Vision Applications)
Show Figures

Figure 1

20 pages, 11204 KB  
Article
Estimating the Spectral Response of Eight-Band MSFA One-Shot Cameras Using Deep Learning
by Pierre Gouton, Kacoutchy Jean Ayikpa and Diarra Mamadou
Algorithms 2024, 17(11), 473; https://doi.org/10.3390/a17110473 - 22 Oct 2024
Viewed by 1418
Abstract
Eight-band one-shot MSFA (multispectral filter array) cameras are innovative technologies used to capture multispectral images by capturing multiple spectral bands simultaneously. They thus make it possible to collect detailed information on the spectral properties of the observed scenes economically. These cameras are widely [...] Read more.
Eight-band one-shot MSFA (multispectral filter array) cameras are innovative technologies used to capture multispectral images by capturing multiple spectral bands simultaneously. They thus make it possible to collect detailed information on the spectral properties of the observed scenes economically. These cameras are widely used for object detection, material analysis, and agronomy. The evolution of one-shot MSFA cameras from 8 to 32 bands makes obtaining much more detailed spectral data possible, which is crucial for applications requiring delicate and precise analysis of the spectral properties of the observed scenes. Our study aims to develop models based on deep learning to estimate the spectral response of this type of camera and provide images close to the spectral properties of objects. First, we prepare our experiment data by projecting them to reflect the characteristics of our camera. Next, we harness the power of deep super-resolution neural networks, such as very deep super-resolution (VDSR), Laplacian pyramid super-resolution networks (LapSRN), and deeply recursive convolutional networks (DRCN), which we adapt to approximate the spectral response. These models learn the complex relationship between 8-band multispectral data from the camera and 31-band multispectral data from the multi-object database, enabling accurate and efficient conversion. Finally, we evaluate the images’ quality using metrics such as loss function, PSNR, and SSIM. The model evaluation revealed that DRCN outperforms others in crucial performance. DRCN achieved the lowest loss with 0.0047 and stood out in image quality metrics, with a PSNR of 25.5059, SSIM of 0.8355, and SAM of 0.13215, indicating better preservation of details and textures. Additionally, DRCN showed the lowest RMSE 0.05849 and MAE 0.0415 values, confirming its ability to minimize reconstruction errors more effectively than VDSR and LapSRN. Full article
(This article belongs to the Special Issue Machine Learning for Pattern Recognition (2nd Edition))
Show Figures

Figure 1

13 pages, 2555 KB  
Article
EffiMob-Net: A Deep Learning-Based Hybrid Model for Detection and Identification of Tomato Diseases Using Leaf Images
by Zahid Ullah, Najah Alsubaie, Mona Jamjoom, Samah H. Alajmani and Farrukh Saleem
Agriculture 2023, 13(3), 737; https://doi.org/10.3390/agriculture13030737 - 22 Mar 2023
Cited by 54 | Viewed by 6242
Abstract
As tomatoes are the most consumed vegetable in the world, production should be increased to fulfill the vast demand for this vegetable. Global warming, climate changes, and other significant factors, including pests, badly affect tomato plants and cause various diseases that ultimately affect [...] Read more.
As tomatoes are the most consumed vegetable in the world, production should be increased to fulfill the vast demand for this vegetable. Global warming, climate changes, and other significant factors, including pests, badly affect tomato plants and cause various diseases that ultimately affect the production of this vegetable. Several strategies and techniques have been adopted for detecting and averting such diseases to ensure the survival of tomato plants. Recently, the application of artificial intelligence (AI) has significantly contributed to agronomy in the detection of tomato plant diseases through leaf images. Deep learning (DL)-based techniques have been largely utilized for detecting tomato leaf diseases. This paper proposes a hybrid DL-based approach for detecting tomato plant diseases through leaf images. To accomplish the task, this study presents the fusion of two pretrained models, namely, EfficientNetB3 and MobileNet (referred to as the EffiMob-Net model) to detect tomato leaf diseases accurately. In addition, model overfitting was handled using various techniques, such as regularization, dropout, and batch normalization (BN). Hyperparameter tuning was performed to choose the optimal parameters for building the best-fitting model. The proposed hybrid EffiMob-Net model was tested on a plant village dataset containing tomato leaf disease and healthy images. This hybrid model was evaluated based on the best classifier with respect to accuracy metrics selected for detecting the diseases. The success rate of the proposed hybrid model for accurately detecting tomato leaf diseases reached 99.92%, demonstrating the model’s ability to extract features accurately. This finding shows the reliability of the proposed hybrid model as an automatic detector for tomato plant diseases that can significantly contribute to providing better solutions for detecting other crop diseases in the field of agriculture. Full article
(This article belongs to the Special Issue Big Data Analytics and Machine Learning for Smart Agriculture)
Show Figures

Figure 1

19 pages, 15925 KB  
Article
GeoDLS: A Deep Learning-Based Corn Disease Tracking and Location System Using RTK Geolocated UAS Imagery
by Aanis Ahmad, Varun Aggarwal, Dharmendra Saraswat, Aly El Gamal and Gurmukh S. Johal
Remote Sens. 2022, 14(17), 4140; https://doi.org/10.3390/rs14174140 - 23 Aug 2022
Cited by 14 | Viewed by 4237
Abstract
Deep learning-based solutions for precision agriculture have recently achieved promising results. Deep learning has been used to identify crop diseases at the initial stages of disease development in an effort to create effective disease management systems. However, the use of deep learning and [...] Read more.
Deep learning-based solutions for precision agriculture have recently achieved promising results. Deep learning has been used to identify crop diseases at the initial stages of disease development in an effort to create effective disease management systems. However, the use of deep learning and unmanned aerial system (UAS) imagery to track the spread of diseases, identify diseased regions within cornfields, and notify users with actionable information remains a research gap. Therefore, in this study, high-resolution, UAS-acquired, real-time kinematic (RTK) geotagged, RGB imagery at an altitude of 12 m above ground level (AGL) was used to develop the Geo Disease Location System (GeoDLS), a deep learning-based system for tracking diseased regions in corn fields. UAS images (resolution 8192 × 5460 pixels) were acquired in cornfields located at Purdue University’s Agronomy Center for Research and Education (ACRE), using a DJI Matrice 300 RTK UAS mounted with a 45-megapixel DJI Zenmuse P1 camera during corn stages V14 to R4. A dataset of 5076 images was created by splitting the UAS-acquired images using tile and simple linear iterative clustering (SLIC) segmentation. For tile segmentation, the images were split into tiles of sizes 250 × 250 pixels, 500 × 500 pixels, and 1000 × 1000 pixels, resulting in 1804, 1112, and 570 image tiles, respectively. For SLIC segmentation, 865 and 725 superpixel images were obtained using compactness (m) values of 5 and 10, respectively. Five deep neural network architectures, VGG16, ResNet50, InceptionV3, DenseNet169, and Xception, were trained to identify diseased, healthy, and background regions in corn fields. DenseNet169 identified diseased, healthy, and background regions with the highest testing accuracy of 100.00% when trained on images of tile size 1000 × 1000 pixels. Using a sliding window approach, the trained DenseNet169 model was then used to calculate the percentage of diseased regions present within each UAS image. Finally, the RTK geolocation information for each image was used to update users with the location of diseased regions with an accuracy of within 2 cm through a web application, a smartphone application, and email notifications. The GeoDLS could be a potential tool for an automated disease management system to track the spread of crop diseases, identify diseased regions, and provide actionable information to the users. Full article
(This article belongs to the Special Issue Advances of Remote Sensing in Precision Agriculture)
Show Figures

Figure 1

5 pages, 199 KB  
Editorial
Deep Learning Techniques for Agronomy Applications
by Chi-Hua Chen, Hsu-Yang Kung and Feng-Jang Hwang
Agronomy 2019, 9(3), 142; https://doi.org/10.3390/agronomy9030142 - 20 Mar 2019
Cited by 29 | Viewed by 7742
Abstract
This editorial introduces the Special Issue, entitled “Deep Learning (DL) Techniques for Agronomy Applications”, of Agronomy. Topics covered in this issue include three main parts: (I) DL-based image recognition techniques for agronomy applications, (II) DL-based time series data analysis techniques for agronomy applications, [...] Read more.
This editorial introduces the Special Issue, entitled “Deep Learning (DL) Techniques for Agronomy Applications”, of Agronomy. Topics covered in this issue include three main parts: (I) DL-based image recognition techniques for agronomy applications, (II) DL-based time series data analysis techniques for agronomy applications, and (III) behavior and strategy analysis for agronomy applications. Three papers on DL-based image recognition techniques for agronomy applications are as follows: (1) “Automatic segmentation and counting of aphid nymphs on leaves using convolutional neural networks,” by Chen et al.; (2) “Estimating body condition score in dairy cows from depth images using convolutional neural networks, transfer learning, and model ensembling techniques,” by Alvarez et al.; and (3) “Development of a mushroom growth measurement system applying deep learning for image recognition,” by Lu et al. One paper on DL-based time series data analysis techniques for agronomy applications is as follows: “LSTM neural network based forecasting model for wheat production in Pakistan,” by Haider et al. One paper on behavior and strategy analysis for agronomy applications is as follows: “Research into the E-learning model of agriculture technology companies: analysis by deep learning,” by Lin et al. Full article
(This article belongs to the Special Issue Deep Learning Techniques for Agronomy Applications)
Back to TopTop