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Abstract: This editorial introduces the Special Issue, entitled “Deep Learning (DL) Techniques for
Agronomy Applications”, of Agronomy. Topics covered in this issue include three main parts: (I)
DL-based image recognition techniques for agronomy applications, (II) DL-based time series data
analysis techniques for agronomy applications, and (III) behavior and strategy analysis for agronomy
applications. Three papers on DL-based image recognition techniques for agronomy applications are
as follows: (1) “Automatic segmentation and counting of aphid nymphs on leaves using convolutional
neural networks,” by Chen et al.; (2) “Estimating body condition score in dairy cows from depth
images using convolutional neural networks, transfer learning, and model ensembling techniques,”
by Alvarez et al.; and (3) “Development of a mushroom growth measurement system applying
deep learning for image recognition,” by Lu et al. One paper on DL-based time series data analysis
techniques for agronomy applications is as follows: “LSTM neural network based forecasting model
for wheat production in Pakistan,” by Haider et al. One paper on behavior and strategy analysis for
agronomy applications is as follows: “Research into the E-learning model of agriculture technology
companies: analysis by deep learning,” by Lin et al.

Keywords: deep learning for agronomy applications; crop growth prediction; pest disaster
prediction; drought disaster prediction; flooding disaster prediction; typhoon disaster prediction;
cold damage prediction

1. Introduction

In recent years, the techniques of deep learning (DL) have been more popular for application in
various agronomy applications. These techniques can be used to support the prediction and prevention
of pest disasters, drought disasters, flooding disasters, typhoon disasters, cold damages, and other
agricultural disasters. Furthermore, crop growth models can be also built by these techniques [1–8].
For instance, supervised learning techniques (e.g., neural network (NN) [9–13], convolutional neural
network (CNN) [14–18], recurrent neural network (RNN) [19–23], and ensemble neural networks
(ENN) [24–28]) can be used to forecast weather information and crop growth to improve crop quantities
and reduce disaster damage. Furthermore, unsupervised learning techniques (e.g., auto-encoder
(AE) [29–33], de-noise auto-encoder (DAE) [34], restricted Boltzmann machine (RBM) [35,36], deep
belief network (DBN) [37,38], and deep Boltzmann machine (DBM) [39,40]) can be used to represent
data and reduce dimensions for regulation and overfitting prevention. The combination of supervised
learning and unsupervised learning techniques can provide the precise estimation and prediction for
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agronomy applications. Therefore, the aim of this Special Issue is to introduce the readers to a number
of papers on various disciplines of agronomy applications.

This Special Issue received a total of 11 submitted papers with only 5 papers accepted. A high
rejection rate of 54.55% of this issue from the review process is to ensure that high-quality papers
with significant results are selected and published. The statistics of the Special Issue are presented
as follows.

• Submissions (11);
• Publications (5);
• Rejections (6);
• Article types: research article (5).

The distribution of authors’ countries is showed as follows.

• China (7);
• Pakistan (2);
• Argentina (1).

Topics covered in this issue include three main parts: (1) DL-based image recognition techniques
for agronomy applications, (2) DL-based time series data analysis techniques for agronomy
applications, and (3) behavior and strategy analysis for agronomy applications. The three topics
and accepted papers are briefly described below.

2. DL-based Image Recognition Techniques for Agronomy Applications

Three papers on DL-based image recognition techniques for agronomy applications are as follows:
(1) “Automatic segmentation and counting of aphid nymphs on leaves using convolutional neural
networks,” by Chen et al. [41]; (2) “Estimating body condition score in dairy cows from depth
images using convolutional neural networks, transfer learning, and model ensembling techniques,” by
Alvarez et al. [42]; and (3) “Development of a mushroom growth measurement system applying deep
learning for image recognition,” by Lu et al. [43].

Chen et al. from China, in “Automatic segmentation and counting of aphid nymphs on leaves
using convolutional neural networks”, considered that the leaf veins or lesions could be misclassified
as pests by color thresholding methods. Therefore, a CNN method based on U-Net was proposed
to segment and count aphid nymphs on leaves for aphid detection and avoidance. In experiments,
102 aphid nymph images in practical experimental environments were collected and analyzed to
detect the number of aphid nymphs on each image for the evaluation of the proposed method.
The results showed that the mean count error and F1-score of the proposed method were 1.2 and
0.9606, respectively [41].

Alvarez et al. from Argentina, in “Estimating body condition score in dairy cows from depth
images using convolutional neural networks, transfer learning, and model ensembling techniques”
considered that the image recognition techniques could be used to estimate body condition scores for
the measurement of obesity degree. Therefore, a CNN method based on transfer learning and ensemble
modeling techniques was proposed to extract and transfer the learned features to target ensembling
networks for classification. In experiments, 1661 cow images in practical experimental environments
were collected and analyzed to estimate the body condition score of each cow for the evaluation of the
proposed method. The results showed that both accuracy and F1-score of the proposed method were
0.97 [42].

Lu et al. from China, in “Development of a mushroom growth measurement system applying
deep learning for image recognition”, considered that the image recognition techniques could be used
to estimate the growth rate, quantity statistics, and size classification of mushrooms for developing the
growth measurement system of mushrooms. Therefore, a CNN method with anchor boxes that were
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clustered by K-Means algorithm was proposed to recognize images with different sizes for detecting
mushrooms. In the experiments, 500 mushroom images in practical experimental environments were
collected and analyzed to detect mushrooms and estimate the size classification of mushrooms for the
evaluation of the proposed method. Furthermore, the harvest time could be estimated in accordance
with observations of the size classification of mushrooms. The results showed that the average harvest
time error of the proposed method was 3.7 hours [43].

3. DL-Based Time Series Data Analysis Techniques for Agronomy Applications

One paper on DL-based time series data analysis techniques for agronomy applications is as
follows: “LSTM neural network based forecasting model for wheat production in Pakistan,” by Haider
et al. from Pakistan [44]. The study considered that the auto-regressive integrated moving average
(ARIMA) models could not be used to solve nonlinear problems for the analyses of time series data.
Therefore, a LSTM (long short-term memory) neural network method with a data pre-processing
smoothing mechanism, which included a smoothing function to smooth out the curve values, was
proposed to predict wheat production. In the experiments, wheat production data from 1902 to 2018
were collected and analyzed to predict wheat production for the evaluation of the proposed method.
The results showed that the root mean squared error of the proposed method was 792 thousand tons
with an improvement of 25% against the existing benchmark models (i.e., ARIMA models) [44].

4. Behavior and Strategy Analysis for Agronomy Applications

One paper on behavior and strategy analysis for agronomy applications is as follows: “Research
into the E-learning model of agriculture technology companies: analysis by deep learning,” by Lin
et al. from China [45]. The study explored the key success factors of augmented reality (AR) and
DL adoption for agriculture technology companies. Therefore, the study combined three theoretical
frameworks, which included (1) an information system success model, (2) expectation confirmation
theory, and (3) the theory of reasoned action for behavior and strategy analyses. In the experiments,
463 effective questionnaires were collected and analyzed to verify 16 assumed hypotheses. The results
presented three insights: (1) AR e-learning using DL is a successful model; (2) the strategy of using
AR e-learning could be welcomed by employees in the agricultural technology industry; and (3) the
development of agricultural and fishery enterprises in Pescadores could be assisted by the Ashoka
Foundation [45].
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