Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = dark sky

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 347
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

21 pages, 2514 KiB  
Article
Investigations into Picture Defogging Techniques Based on Dark Channel Prior and Retinex Theory
by Lihong Yang, Zhi Zeng, Hang Ge, Yao Li, Shurui Ge and Kai Hu
Appl. Sci. 2025, 15(15), 8319; https://doi.org/10.3390/app15158319 - 26 Jul 2025
Viewed by 179
Abstract
To address the concerns of contrast deterioration, detail loss, and color distortion in images produced under haze conditions in scenarios such as intelligent driving and remote sensing detection, an algorithm for image defogging that combines Retinex theory and the dark channel prior is [...] Read more.
To address the concerns of contrast deterioration, detail loss, and color distortion in images produced under haze conditions in scenarios such as intelligent driving and remote sensing detection, an algorithm for image defogging that combines Retinex theory and the dark channel prior is proposed in this paper. The method involves building a two-stage optimization framework: in the first stage, global contrast enhancement is achieved by Retinex preprocessing, which effectively improves the detail information regarding the dark area and the accuracy of the transmittance map and atmospheric light intensity estimation; in the second stage, an a priori compensation model for the dark channel is constructed, and a depth-map-guided transmittance correction mechanism is introduced to obtain a refined transmittance map. At the same time, the atmospheric light intensity is accurately calculated by the Otsu algorithm and edge constraints, which effectively suppresses the halo artifacts and color deviation of the sky region in the dark channel a priori defogging algorithm. The experiments based on self-collected data and public datasets show that the algorithm in this paper presents better detail preservation ability (the visible edge ratio is minimally improved by 0.1305) and color reproduction (the saturated pixel ratio is reduced to about 0) in the subjective evaluation, and the average gradient ratio of the objective indexes reaches a maximum value of 3.8009, which is improved by 36–56% compared with the classical DCP and Tarel algorithms. The method provides a robust image defogging solution for computer vision systems under complex meteorological conditions. Full article
Show Figures

Figure 1

35 pages, 4659 KiB  
Article
Ecological Light Pollution (ELP) Scale as a Measure of Light Pollution Impact on Protected Areas: Case Study of Poland
by Tomasz Ściężor, Grzegorz Iwanicki, Mieczysław Kunz, Andrzej Z. Kotarba, Karolina Skorb and Przemysław Tabaka
Sustainability 2025, 17(11), 4824; https://doi.org/10.3390/su17114824 - 23 May 2025
Viewed by 923
Abstract
Light pollution is a rapidly growing environmental challenge, with the global brightness of the night sky increasing by an average of 9.6% per year. This study assessed the ecological impact of artificial light at night (ALAN) on protected areas in Poland, including all [...] Read more.
Light pollution is a rapidly growing environmental challenge, with the global brightness of the night sky increasing by an average of 9.6% per year. This study assessed the ecological impact of artificial light at night (ALAN) on protected areas in Poland, including all 23 national and 125 landscape parks, from 2012 to 2023. Based on VIIRS satellite radiance data and modelled sky surface brightness (Sa), we developed and applied the Ecological Light Pollution (ELP) scale, which classifies areas into four classes of ecological impact: strong (ELP-A), pronounced (ELP-B), noticeable (ELP-C), and weak or none (ELP-D). The analysis revealed that 38.5% of protected areas are affected by artificial skyglow at levels classified as ELP-B or ELP-C. Under cloudy conditions, which intensify light pollution effects, 22% of national parks and 41.8% of landscape parks fell into these classes. Notably, Wielkopolski National Park exhibited the most pronounced impact (ELP-B) even under clear skies, primarily due to its proximity to the Poznań metropolitan area. In contrast, Bieszczadzki and Białowieski National Parks recorded near-natural darkness (ELP-D). These light pollution effects can disrupt nocturnal species’ behaviour, reduce biodiversity, and degrade opportunities for dark-sky tourism. The findings emphasise the need for targeted mitigation, including stricter outdoor lighting regulations, formal dark-sky protection zones, and public education to preserve protected areas’ ecological integrity and tourism potential. Full article
Show Figures

Figure 1

15 pages, 5224 KiB  
Article
Expression of Metallic Artifacts Caused by Intracanal Medications with Different Chemical Compositions in Cone Beam Computed Tomography Images
by Giovane Oliveira Silva, Júlia Godoi Lopes, Amanda Pelegrin Candemil, Iago Ramirez, Ruben Pauwels, Manoel Damião Sousa-Neto, Fabiane Carneiro Lopes-Olhê, Giovanni Mergoni and Jardel Francisco Mazzi-Chaves
Diagnostics 2025, 15(8), 963; https://doi.org/10.3390/diagnostics15080963 - 10 Apr 2025
Viewed by 515
Abstract
Background/Objectives: Evaluation of artifact expression in CBCT images caused by different intracanal medications (IMs) considering variations in scanning and reconstruction protocols. Reconstruction protocols refer to the specific parameters and image processing techniques applied during CBCT acquisition, including voxel size, slice thickness, and [...] Read more.
Background/Objectives: Evaluation of artifact expression in CBCT images caused by different intracanal medications (IMs) considering variations in scanning and reconstruction protocols. Reconstruction protocols refer to the specific parameters and image processing techniques applied during CBCT acquisition, including voxel size, slice thickness, and artifact reduction settings. MicroCT was used as the reference standard. Methods: Root canal preparation (45./05) of upper canines was performed, and the teeth were divided into four groups (n = 10) according to the IM used: G1: Ultracal XS (UC); G2: Bio-C Temp (BCT); G3: Metapex (MT); and G4: Metapaste (MP). The specimens were sealed with temporary provisional material and stored at 37 °C and 100% humidity for 7 days. Then, they were scanned using microCT (SkyScan 1174) and two CBCTs in high and low resolutions: EagleX3D and OP300. Image registration was performed using FIJI ImageJ software (v. 1.54k). Axial, sagittal, and coronal reconstructions were quali-quantitatively evaluated by two calibrated examiners following the scores for the artifacts (dark streaks, hypodense areas, and distortion): definitely absent; probably absent; not sure; probably present and definitely present; and the possibility of using the images for endodontic diagnosis: No/Yes. Statistical analysis was performed using Fleiss’ kappa test and two-way ANOVA (α = 95%). Results: CBCT images showed greater volume distortion of intracanal medication (p < 0.05) compared to microCT images. X3D CBCT showed the highest values of distortion, regardless of resolution, compared to OP300 (p < 0.05). The highest and lowest volume distortion for intracanal medications was observed in the UC and BCT groups, respectively (p < 0.05). Conclusions: Intracanal medication generates metallic artifact expression in CBCT images, hampering endodontic diagnosis. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

14 pages, 4610 KiB  
Article
Relationship Between Darkness and Healing of Night Sky in Planetarium
by Midori Tanaka, Kenichi Otani and Takahiko Horiuchi
Int. J. Environ. Res. Public Health 2025, 22(4), 569; https://doi.org/10.3390/ijerph22040569 - 5 Apr 2025
Viewed by 659
Abstract
This study aimed to address the unexplored relaxing effects of stargazing with different night sky darknesses in a planetarium by conducting an experiment to investigate the physiological effects of the relaxation/stress state on brain and autonomic nervous system activity, as well as the [...] Read more.
This study aimed to address the unexplored relaxing effects of stargazing with different night sky darknesses in a planetarium by conducting an experiment to investigate the physiological effects of the relaxation/stress state on brain and autonomic nervous system activity, as well as the psychological healing effects. Five healthy young women participated in our experiment. We conducted physiological measurements of oxygenated hemoglobin (OxyHb) concentration in the left and right prefrontal cortices by near-infrared spectroscopy, heart rate variability as a measure of the relaxation/stress state, and a psychological assessment of healing on an 11-point Likert scale. We used 9 types of stimuli: 6-star image stimuli that imitated dark star fields (low light pollution) to bright night sky (high light pollution), and movie stimuli that were viewed daily. The results showed that (1) visual stimulation with images of dark night sky significantly reduced the concentration of OxyHb in the right prefrontal cortex and (2) the psychological rating of healing was significantly higher compared to bright night sky. The results of this study will help solve the problems of the mental and physical effects of light pollution on astronomical observations and the reproduction of star images in planetariums. Full article
Show Figures

Figure 1

13 pages, 2040 KiB  
Article
Neural Network for Sky Darkness Level Prediction in Rural Areas
by Alejandro Martínez-Martín, Miguel Ángel Jaramillo-Morán, Diego Carmona-Fernández, Manuel Calderón-Godoy and Juan Félix González González
Sustainability 2024, 16(17), 7795; https://doi.org/10.3390/su16177795 - 6 Sep 2024
Viewed by 1191
Abstract
A neural network was developed using the Multilayer Perceptron (MLP) model to predict the darkness value of the night sky in rural areas. For data collection, a photometer was placed in three different rural locations in the province of Cáceres, Spain, recording darkness [...] Read more.
A neural network was developed using the Multilayer Perceptron (MLP) model to predict the darkness value of the night sky in rural areas. For data collection, a photometer was placed in three different rural locations in the province of Cáceres, Spain, recording darkness values over a period of 23 months. The recorded data were processed, debugged, and used as a training set (75%) and validation set (25%) in the development of an MLP capable of predicting the darkness level for a given date. The network had a single hidden layer of 10 neurons and hyperbolic activation function, obtaining a coefficient of determination (R2) of 0.85 and a mean absolute percentage error (MAPE) of 6.8%. The developed model could be employed in unpopulated rural areas for the promotion of sustainable astronomical tourism. Full article
Show Figures

Figure 1

13 pages, 27539 KiB  
Article
Enhancing Image Dehazing with a Multi-DCP Approach with Adaptive Airlight and Gamma Correction
by Jungyun Kim, Tiong-Sik Ng and Andrew Beng Jin Teoh
Appl. Sci. 2024, 14(17), 7978; https://doi.org/10.3390/app14177978 - 6 Sep 2024
Cited by 2 | Viewed by 1354
Abstract
Haze imagery suffers from reduced clarity, which can be attributed to atmospheric conditions such as dust or water vapor, resulting in blurred visuals and heightened brightness due to light scattering. Conventional methods employing the dark channel prior (DCP) for transmission map estimation often [...] Read more.
Haze imagery suffers from reduced clarity, which can be attributed to atmospheric conditions such as dust or water vapor, resulting in blurred visuals and heightened brightness due to light scattering. Conventional methods employing the dark channel prior (DCP) for transmission map estimation often excessively amplify fogged sky regions, causing image distortion. This paper presents a novel approach to improve transmission map granularity by utilizing multiple 1×1 DCPs derived from multiscale hazy, inverted, and Euclidean difference images. An adaptive airlight estimation technique is proposed to handle low-light, hazy images. Furthermore, an adaptive gamma correction method is introduced to refine the transmission map further. Evaluation of dehazed images using the Dehazing Quality Index showcases superior performance compared to existing techniques, highlighting the efficacy of the enhanced transmission map. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 5638 KiB  
Article
A Method for Defogging Sea Fog Images by Integrating Dark Channel Prior with Adaptive Sky Region Segmentation
by Kongchi Hu, Qingyan Zeng, Junyan Wang, Jianqing Huang and Qi Yuan
J. Mar. Sci. Eng. 2024, 12(8), 1255; https://doi.org/10.3390/jmse12081255 - 25 Jul 2024
Cited by 3 | Viewed by 1354
Abstract
Due to the detrimental impact of fog on image quality, dehazing maritime images is essential for applications such as safe maritime navigation, surveillance, environmental monitoring, and marine research. Traditional dehazing techniques, which are dependent on presupposed conditions, often fail to perform effectively, particularly [...] Read more.
Due to the detrimental impact of fog on image quality, dehazing maritime images is essential for applications such as safe maritime navigation, surveillance, environmental monitoring, and marine research. Traditional dehazing techniques, which are dependent on presupposed conditions, often fail to perform effectively, particularly when processing sky regions within marine fog images in which these conditions are not met. This study proposes an adaptive sky area segmentation dark channel prior to the marine image dehazing method. This study effectively addresses challenges associated with traditional marine image dehazing methods, improving dehazing results affected by bright targets in the sky area and mitigating the grayish appearance caused by the dark channel. This study uses the grayscale value of the region boundary’s grayscale discontinuity characteristics, takes the grayscale value with the least number of discontinuity areas in the grayscale histogram as a segmentation threshold adapted to the characteristics of the sea fog image to segment bright areas such as the sky, and then uses grayscale gradients to identify grayscale differences in different bright areas, accurately distinguishing boundaries between sky and non-sky areas. By comparing the area parameters, non-sky blocks are filled; this adaptively eliminates interference from other bright non-sky areas and accurately locks the sky area. Furthermore, this study proposes an enhanced dark channel prior approach that optimizes transmittance locally within sky areas and globally across the image. This is achieved using a transmittance optimization algorithm combined with guided filtering technology. The atmospheric light estimation is refined through iterative adjustments, ensuring consistency in brightness between the dehazed and original images. The image reconstruction employs calculated atmospheric light and transmittance values through an atmospheric scattering model. Finally, the use of gamma-correction technology ensures that images more accurately replicate natural colors and brightness levels. Experimental outcomes demonstrate substantial improvements in the contrast, color saturation, and visual clarity of marine fog images. Additionally, a set of foggy marine image data sets is developed for monitoring purposes. Compared with traditional dark channel prior dehazing techniques, this new approach significantly improves fog removal. This advancement enhances the clarity of images obtained from maritime equipment and effectively mitigates the risk of maritime transportation accidents. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

11 pages, 1211 KiB  
Article
The Ecological Economics of Light Pollution: Impacts on Ecosystem Service Value
by Sharolyn J. Anderson, Ida Kubiszewski and Paul C. Sutton
Remote Sens. 2024, 16(14), 2591; https://doi.org/10.3390/rs16142591 - 15 Jul 2024
Cited by 3 | Viewed by 4559
Abstract
Light pollution has detrimental impacts on wildlife, human health, and ecosystem functions and services. This paper explores the impact of light pollution on the value of ecosystem services. We use the Simplified All-Sky Light Pollution Ratio (sALR) as a proxy for the negative [...] Read more.
Light pollution has detrimental impacts on wildlife, human health, and ecosystem functions and services. This paper explores the impact of light pollution on the value of ecosystem services. We use the Simplified All-Sky Light Pollution Ratio (sALR) as a proxy for the negative impact of light pollution and the Copernicus PROBA-V Global Landcover Database as our proxy of ecosystem service value based on previously published ecosystem service values associated with a variety of landcovers. We use the sALR value to ‘degrade’ the value of ecosystem services. This results in a 40% reduction in ecosystem service value in those areas of the world with maximum levels of light pollution. Using this methodology, the estimate of the annual loss of ecosystem service value due to light pollution is USD 3.4 trillion. This represents roughly 3% of the total global value of ecosystem services and 3% of the global GDP, estimated at roughly USD 100 trillion in 2022. A summary of how these losses are distributed amongst the world’s countries and landcovers is also presented. Full article
Show Figures

Figure 1

15 pages, 3094 KiB  
Technical Note
Interactions between MSTIDs and Ionospheric Irregularities in the Equatorial Region Observed on 13–14 May 2013
by Kun Wu and Liying Qian
Remote Sens. 2024, 16(13), 2413; https://doi.org/10.3390/rs16132413 - 1 Jul 2024
Cited by 1 | Viewed by 1308
Abstract
We investigate the interactions between medium-scale traveling ionospheric disturbances (MSTIDs) and the equatorial ionization anomaly (EIA) as well as between MSTIDs and equatorial plasma bubbles (EPBs) on the night of 13–14 May 2013, based on observations from multiple instruments (an all-sky imager, digisonde, [...] Read more.
We investigate the interactions between medium-scale traveling ionospheric disturbances (MSTIDs) and the equatorial ionization anomaly (EIA) as well as between MSTIDs and equatorial plasma bubbles (EPBs) on the night of 13–14 May 2013, based on observations from multiple instruments (an all-sky imager, digisonde, and global positioning system (GPS)). Two dark bands (the low plasma density region) for the MSTIDs were observed moving toward each other, encountering and interacting with the EIA, and subsequently interacting again with the EIA before eventually dissipating. Then, a new dark band of MSTIDs moved in the southwest direction, drifted into the all-sky imager’s field of view (FOV), and interacted with the EIA. Following this interaction, a new dark band split off from the original dark band, slowly moved in the northeast direction, and eventually faded away in a short time. Subsequently, the original southwestward-propagating dark band of the MSTIDs encountered eastward-moving EPBs, leading to an interaction between the MSTIDs and the EPBs. Then, the dark band of the MSTIDs faded away, while the EPBs grew larger with a pronounced westward tilt. The results from various observational instruments indicate the pivotal role played by the high-density region of the EIA in the occurrence of various interaction processes. In addition, this study also revealed that MSTIDs propagating into the equatorial region can significantly impact the morphology and evolution characteristics of EPBs. Full article
Show Figures

Figure 1

19 pages, 402 KiB  
Article
Ultrafast Modulations in Stellar, Solar and Galactic Spectra: Dark Matter and Numerical Ghosts, Stellar Flares and SETI
by Fabrizio Tamburini and Ignazio Licata
Particles 2024, 7(3), 576-594; https://doi.org/10.3390/particles7030032 - 29 Jun 2024
Cited by 2 | Viewed by 1111
Abstract
Background: From new results presented in the literature we discuss the hypothesis, presented in an our previous work, that the ultrafast periodic spectral modulations at fS=0.607±0.08 THz found in the spectra of 236 stars of the Sloan Digital [...] Read more.
Background: From new results presented in the literature we discuss the hypothesis, presented in an our previous work, that the ultrafast periodic spectral modulations at fS=0.607±0.08 THz found in the spectra of 236 stars of the Sloan Digital Sky Survey (SDSS) were due to oscillations induced by dark matter (DM) cores in their centers that behave as oscillating boson stars. Two other frequencies were found by Borra in the redshift-corrected SDSS galactic spectra, f1,G=9.710.19+0.20 THz and f2,G=9.170.16+0.18 THz; the latter was then shown by Hippke to be a spurious frequency introduced by the data analysis procedure. Results: Within the experimental errors, the frequency f1,G is the beating of the two frequencies, the spurious one, f2,G and fS that was also independently detected in a real solar spectrum, but not in the Kurucz’s artificial solar spectrum by Hippke, suggesting that fS could actually be a real frequency. Independent SETI observations by Isaacson et al., taken at different epochs, of four of these 236 stars could not confirm with high confidence—without completely excluding—the presence of fS in their power spectra and with the same power initially observed. Instead, the radio SETI deep-learning analysis with artificial intelligence (AI) gave an indirect confirmation of the presence of fS through the detection of a narrowband Doppler drifting of the observed radio signals in two stars, over a sample of 7 with a high S/N. These two stars belong to the set of the 236 SDSS stars. Numerical simulations confirm that this drifting can be due to frequency and phase modulation in time of the observed frequencies (1.3–1.7 GHz) with fS. Conclusions: Assuming the DM hypothesis, the upper mass limit of the axion-like DM particle is ma2.4×103μeV, in agreement with the results from the gamma ray burst GRB221009A, laser interferometry experiments, suggesting new physics with additional axion-like particle fields for the muon g-2 anomaly. Full article
Show Figures

Figure 1

18 pages, 1497 KiB  
Review
A Review of the Characteristics of Light Pollution: Assessment Technique, Policy, and Legislation
by Ying Hao, Peiyao Wang, Zhongyao Zhang, Zhiming Xu and Dagong Jia
Energies 2024, 17(11), 2750; https://doi.org/10.3390/en17112750 - 4 Jun 2024
Cited by 7 | Viewed by 3490
Abstract
Light pollution from the use of artificial lighting poses significant impacts on human health, traffic safety, ecological environment, astronomy, and energy use. The advancement of characteristics of light pollution assessment technology has played a significant role in shaping prevention and control policies, thereby [...] Read more.
Light pollution from the use of artificial lighting poses significant impacts on human health, traffic safety, ecological environment, astronomy, and energy use. The advancement of characteristics of light pollution assessment technology has played a significant role in shaping prevention and control policies, thereby enabling measures, such as environmental standards and legislation and product procurement guidelines, but considerable variation in the definition, control strategies, and regulatory frameworks remains. Therefore, there is a need to review the characteristics of light pollution, including the assessment technique, policy, and legislation. Through the literature review, it can be found that technical standards are required to prevent light pollution. For example, light pollution is decreased by 6% in France through the legislation of artificial light. Key approaches are suggested to control global light pollution, including implementing ambient brightness zoning, regulating lighting product usage, and establishing dark sky reserves. Technology and policy should be integrated. The precise data coming from satellite imagery, drones, and balloons could provide guidance when making the policies. Full article
(This article belongs to the Topic Thermal Energy Transfer and Storage)
Show Figures

Figure 1

16 pages, 1262 KiB  
Article
Cosmological Inference from within the Peculiar Local Universe
by Roya Mohayaee, Mohamed Rameez and Subir Sarkar
Universe 2024, 10(5), 209; https://doi.org/10.3390/universe10050209 - 7 May 2024
Cited by 23 | Viewed by 1680
Abstract
The existence of ‘peculiar’ velocities due to the formation of cosmic structure marks a point of discord between the real universe and the usually assumed Friedmann–Lemaítre–Robertson–Walker metric, which accomodates only the smooth Hubble expansion on large scales. In the standard ΛCDM model [...] Read more.
The existence of ‘peculiar’ velocities due to the formation of cosmic structure marks a point of discord between the real universe and the usually assumed Friedmann–Lemaítre–Robertson–Walker metric, which accomodates only the smooth Hubble expansion on large scales. In the standard ΛCDM model framework, Type Ia supernovae data are routinely “corrected” for the peculiar velocities of both the observer and the supernova host galaxies relative to the cosmic rest frame, in order to infer evidence for acceleration of the expansion rate from their Hubble diagram. However, observations indicate a strong, coherent local bulk flow that continues outward without decaying out to a redshift z0.1, contrary to the ΛCDM expectation. By querying the halo catalogue of the Dark Sky Hubble-volume N-body simulation, we find that an observer placed in an unusual environment like our local universe should see correlations between supernovae in the JLA catalogue that are 2–8 times stronger than seen by a typical or Copernican observer. This accounts for our finding that peculiar velocity corrections have a large impact on the value of the cosmological constant inferred from supernova data. We also demonstrate that local universe-like observers will infer a downward biased value of the clustering parameter S8 from comparing the density and velocity fields. More realistic modelling of the peculiar local universe is thus essential for correctly interpreting cosmological data. Full article
(This article belongs to the Special Issue The Large-Scale Structure of the Universe: Theory and Observation)
Show Figures

Figure 1

10 pages, 1543 KiB  
Article
Design and Performance of a Low-Energy Gamma-Ray Trigger System for HERD
by Luis Fariña, Keerthana Lathika, Giulio Lucchetta, Monong Yu, Joan Boix, Laia Cardiel-Sas, Oscar Blanch, Manel Martinez and Javier Rico
Instruments 2024, 8(2), 31; https://doi.org/10.3390/instruments8020031 - 4 May 2024
Viewed by 1973
Abstract
The High Energy cosmic-Radiation Detection (HERD) facility has been proposed as one of the main experiments on board the Chinese space station. HERD is scheduled to be installed around 2027 and to operate for at least 10 years. Its main scientific goals are [...] Read more.
The High Energy cosmic-Radiation Detection (HERD) facility has been proposed as one of the main experiments on board the Chinese space station. HERD is scheduled to be installed around 2027 and to operate for at least 10 years. Its main scientific goals are the study of the cosmic ray spectrum and composition up to the PeV energy range, indirect dark matter detection, and all-sky gamma-ray observation above 100 MeV. HERD features a novel design in order to optimize its acceptance per weight, with a central 3D imaging calorimeter surrounded on top and on its four lateral sides by complementary subdetectors. A dedicated trigger, dubbed the ultra-low-energy gamma-ray (ULEG) trigger, is required to enable the detection of gamma rays down to ~100 MeV. The ULEG trigger design is based upon the search for energy deposition patterns on the tracker and the anticoincidence shield, compatible with the conversion of a gamma ray within the tracker volume and resulting in enough tracker hits to allow for a good-quality gamma-ray direction reconstruction. We describe the current status of the design of the ULEG trigger system. We also characterize its performance in detecting gamma rays as inferred from Monte Carlo studies. Full article
Show Figures

Figure 1

18 pages, 17281 KiB  
Article
ZYNQ-Based Visible Light Defogging System Design Realization
by Bohan Liu, Qihai Wei and Kun Ding
Sensors 2024, 24(7), 2276; https://doi.org/10.3390/s24072276 - 3 Apr 2024
Cited by 2 | Viewed by 1437
Abstract
Under a foggy environment, the air contains a large number of suspended particles, which lead to the loss of image information and decline of contrast collected by the vision system. This makes subsequent processing and analysis difficult. At the same time, the current [...] Read more.
Under a foggy environment, the air contains a large number of suspended particles, which lead to the loss of image information and decline of contrast collected by the vision system. This makes subsequent processing and analysis difficult. At the same time, the current stage of the defogging system has problems such as high hardware cost and poor real-time processing. In this article, an image defogging system is designed based on the ZYNQ platform. First of all, on the basis of the traditional dark-channel defogging algorithm, an algorithm for segmenting the sky is proposed, and in this way, the image distortion caused by the sky region is avoided, and the atmospheric light value and transmittance are estimated more accurately. Then color balancing is performed after image defogging to improve the quality of the final output image. The parallel computing advantage and logic resources of the PL (Programmable Logic) part (FPGA) of ZYNQ are fully utilized through instruction constraints and logic optimization. Finally, the visible light detector is used as the input to build a real-time video processing experiment platform. The experimental results show that the system has a good defogging effect and meet the real-time requirements. Full article
(This article belongs to the Special Issue Image Processing in Sensors and Communication Systems)
Show Figures

Figure 1

Back to TopTop