Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = cysteine scanning mutagenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3882 KiB  
Article
The Formation of β-Strand Nine (β9) in the Folding and Insertion of BamA from an Unfolded Form into Lipid Bilayers
by Sascha Herwig and Jörg H. Kleinschmidt
Membranes 2023, 13(2), 247; https://doi.org/10.3390/membranes13020247 - 19 Feb 2023
Cited by 2 | Viewed by 2311
Abstract
Transmembrane proteins span lipid bilayer membranes and serve essential functions in all living cells. Membrane-inserted domains are of either α-helical or β-barrel structure. Despite their biological importance, the biophysical mechanisms of the folding and insertion of proteins into membranes are not well [...] Read more.
Transmembrane proteins span lipid bilayer membranes and serve essential functions in all living cells. Membrane-inserted domains are of either α-helical or β-barrel structure. Despite their biological importance, the biophysical mechanisms of the folding and insertion of proteins into membranes are not well understood. While the relative composition of the secondary structure has been examined by circular dichroism spectroscopy in folding studies for several outer membrane proteins, it is currently not known how individual β-strands fold. Here, the folding and insertion of the β-barrel assembly machinery protein A (BamA) from the outer membrane of Escherichia coli into lipid bilayers were investigated, and the formation of strand nine (β9) of BamA was examined. Eight single-cysteine mutants of BamA were overexpressed and isolated in unfolded form in 8 M urea. In each of these mutants, one of the residues of strand β9, from R572 to V579, was replaced by a cysteine and labeled with the fluorophore IAEDANS for site-directed fluorescence spectroscopy. Upon urea-dilution, the mutants folded into the native structure and were inserted into lipid bilayers of dilauroylphosphatidylcholine, similar to wild-type BamA. An aqueous and a membrane-adsorbed folding intermediate of BamA could be identified by strong shifts in the intensity maxima of the IAEDANS fluorescence of the labeled mutants of BamA towards shorter wavelengths, even in the absence of lipid bilayers. The shifts were greatest for membrane-adsorbed mutants and smaller for the inserted, folded mutants or the aqueous intermediates. The spectra of the mutants V573C-, L575C-, G577C-, and V579C-BamA, facing the lipid bilayer, displayed stronger shifts than the spectra recorded for the mutants R572C-, N574C-, T576C-, and K578C-BamA, facing the β-barrel lumen, in both the membrane-adsorbed form and the folded, inserted form. This alternating pattern was neither observed for the IAEDANS spectra of the unfolded forms nor for the water-collapsed forms, indicating that strand β9 forms in a membrane-adsorbed folding intermediate of BamA. The combination of cysteine scanning mutagenesis and site-directed fluorescence labeling is shown to be a valuable tool in examining the local secondary structure formation of transmembrane proteins. Full article
Show Figures

Figure 1

24 pages, 8633 KiB  
Article
Fluorescent Imaging of Extracellular Fungal Enzymes Bound onto Plant Cell Walls
by Neus Gacias-Amengual, Lena Wohlschlager, Florian Csarman and Roland Ludwig
Int. J. Mol. Sci. 2022, 23(9), 5216; https://doi.org/10.3390/ijms23095216 - 6 May 2022
Cited by 1 | Viewed by 3212
Abstract
Lignocelluloytic enzymes are industrially applied as biocatalysts for the deconstruction of recalcitrant plant biomass. To study their biocatalytic and physiological function, the assessment of their binding behavior and spatial distribution on lignocellulosic material is a crucial prerequisite. In this study, selected hydrolases and [...] Read more.
Lignocelluloytic enzymes are industrially applied as biocatalysts for the deconstruction of recalcitrant plant biomass. To study their biocatalytic and physiological function, the assessment of their binding behavior and spatial distribution on lignocellulosic material is a crucial prerequisite. In this study, selected hydrolases and oxidoreductases from the white rot fungus Phanerochaete chrysosporium were localized on model substrates as well as poplar wood by confocal laser scanning microscopy. Two different detection approaches were investigated: direct tagging of the enzymes and tagging specific antibodies generated against the enzymes. Site-directed mutagenesis was employed to introduce a single surface-exposed cysteine residue for the maleimide site-specific conjugation. Specific polyclonal antibodies were produced against the enzymes and were labeled using N-hydroxysuccinimide (NHS) ester as a cross-linker. Both methods allowed the visualization of cell wall-bound enzymes but showed slightly different fluorescent yields. Using native poplar thin sections, we identified the innermost secondary cell wall layer as the preferential attack point for cellulose-degrading enzymes. Alkali pretreatment resulted in a partial delignification and promoted substrate accessibility and enzyme binding. The methods presented in this study are suitable for the visualization of enzymes during catalytic biomass degradation and can be further exploited for interaction studies of lignocellulolytic enzymes in biorefineries. Full article
(This article belongs to the Topic Advances in Enzymes and Protein Engineering)
Show Figures

Figure 1

14 pages, 3140 KiB  
Article
Pyrene Excimer-Based Fluorescent Labeling of Cysteines Brought into Close Proximity by Protein Dynamics: ASEM-Induced Thiol-Ene Click Reaction for High Spatial Resolution CLEM
by Masami Naya and Chikara Sato
Int. J. Mol. Sci. 2020, 21(20), 7550; https://doi.org/10.3390/ijms21207550 - 13 Oct 2020
Cited by 9 | Viewed by 3707
Abstract
Fluorescence microscopy (FM) has revealed vital molecular mechanisms of life. Mainly, molecules labeled by fluorescent probes are imaged. However, the diversity of labeling probes and their functions remain limited. We synthesized a pyrene-based fluorescent probe targeting SH groups, which are important for protein [...] Read more.
Fluorescence microscopy (FM) has revealed vital molecular mechanisms of life. Mainly, molecules labeled by fluorescent probes are imaged. However, the diversity of labeling probes and their functions remain limited. We synthesized a pyrene-based fluorescent probe targeting SH groups, which are important for protein folding and oxidative stress sensing in cells. The labeling achieved employs thiol-ene click reactions between the probes and SH groups and is triggered by irradiation by UV light or an electron beam. When two tagged pyrene groups were close enough to be excited as a dimer (excimer), they showed red-shifted fluorescence; theoretically, the proximity of two SH residues within ~30 Å can thus be monitored. Moreover, correlative light/electron microscopy (CLEM) was achieved using our atmospheric scanning electron microscope (ASEM); radicals formed in liquid by the electron beam caused the thiol-ene click reactions, and excimer fluorescence of the labeled proteins in cells and tissues was visualized by FM. Since the fluorescent labeling is induced by a narrow electron beam, high spatial resolution labeling is expected. The method can be widely applied to biological fields, for example, to study protein dynamics with or without cysteine mutagenesis, and to beam-induced micro-fabrication and the precise post-modification of materials. Full article
Show Figures

Graphical abstract

13 pages, 1413 KiB  
Article
Directed Evolution and Engineering of Gallium-Binding Phage Clones—A Preliminary Study
by Nora Schönberger, Christina Zeitler, Robert Braun, Franziska L. Lederer, Sabine Matys and Katrin Pollmann
Biomimetics 2019, 4(2), 35; https://doi.org/10.3390/biomimetics4020035 - 8 May 2019
Cited by 9 | Viewed by 4446
Abstract
The phage surface display technology is a useful tool to screen and to extend the spectrum of metal-binding protein structures provided by nature. The directed evolution approach allows identifying specific peptide ligands for metals that are less abundant in the biosphere. Such peptides [...] Read more.
The phage surface display technology is a useful tool to screen and to extend the spectrum of metal-binding protein structures provided by nature. The directed evolution approach allows identifying specific peptide ligands for metals that are less abundant in the biosphere. Such peptides are attractive molecules in resource technology. For example, gallium-binding peptides could be applied to recover gallium from low concentrated industrial wastewater. In this study, we investigated the affinity and selectivity of five bacteriophage clones displaying different gallium-binding peptides towards gallium and arsenic in independent biosorption experiments. The displayed peptides were highly selective towards Ga3+ whereby long linear peptides showed a lower affinity and specificity than those with a more rigid structure. Cysteine scanning was performed to determine the relationship between secondary peptide structure and gallium sorption. By site-directed mutagenesis, the amino acids of a preselected peptide sequence are systematically replaced by cysteines. The resulting disulphide bridge considerably reduces the flexibility of linear peptides. Subsequent biosorption experiments carried out with the mutants obtained from cysteine scanning demonstrated, depending on the position of the cysteines in the peptide, either a considerable increase in the affinity of gallium compared to arsenic or an increase in the affinity for arsenic compared to gallium. This study shows the impressive effect on peptide–target interaction based on peptide structure and amino acid position and composition via the newly established systematic cysteine scanning approach. Full article
(This article belongs to the Special Issue Selected Papers from N.I.C.E. 2018)
Show Figures

Figure 1

Back to TopTop