Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = cystathionine β-synthase/cystathionine γ-lyase (CBS/CSE) system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 19670 KiB  
Review
Chemistry of Hydrogen Sulfide—Pathological and Physiological Functions in Mammalian Cells
by Celia María Curieses Andrés, José Manuel Pérez de la Lastra, Celia Andrés Juan, Francisco J. Plou and Eduardo Pérez-Lebeña
Cells 2023, 12(23), 2684; https://doi.org/10.3390/cells12232684 - 22 Nov 2023
Cited by 30 | Viewed by 4589
Abstract
Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human [...] Read more.
Hydrogen sulfide (H2S) was recognized as a gaseous signaling molecule, similar to nitric oxide (-NO) and carbon monoxide (CO). The aim of this review is to provide an overview of the formation of hydrogen sulfide (H2S) in the human body. H2S is synthesized by enzymatic processes involving cysteine and several enzymes, including cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (3MST) and D-amino acid oxidase (DAO). The physiological and pathological effects of hydrogen sulfide (H2S) on various systems in the human body have led to extensive research efforts to develop appropriate methods to deliver H2S under conditions that mimic physiological settings and respond to various stimuli. These functions span a wide spectrum, ranging from effects on the endocrine system and cellular lifespan to protection of liver and kidney function. The exact physiological and hazardous thresholds of hydrogen sulfide (H2S) in the human body are currently not well understood and need to be researched in depth. This article provides an overview of the physiological significance of H2S in the human body. It highlights the various sources of H2S production in different situations and examines existing techniques for detecting this gas. Full article
Show Figures

Figure 1

16 pages, 15773 KiB  
Article
Sequential Accumulation of ‘Driver’ Pathway Mutations Induces the Upregulation of Hydrogen-Sulfide-Producing Enzymes in Human Colonic Epithelial Cell Organoids
by Kelly Ascenção, Nahzli Dilek, Karim Zuhra, Katalin Módis, Toshiro Sato and Csaba Szabo
Antioxidants 2022, 11(9), 1823; https://doi.org/10.3390/antiox11091823 - 15 Sep 2022
Cited by 19 | Viewed by 3517
Abstract
Recently, a CRISPR-Cas9 genome-editing system was developed with introduced sequential ‘driver’ mutations in the WNT, MAPK, TGF-β, TP53 and PI3K pathways into organoids derived from normal human intestinal epithelial cells. Prior studies have demonstrated that isogenic organoids harboring mutations in the tumor suppressor [...] Read more.
Recently, a CRISPR-Cas9 genome-editing system was developed with introduced sequential ‘driver’ mutations in the WNT, MAPK, TGF-β, TP53 and PI3K pathways into organoids derived from normal human intestinal epithelial cells. Prior studies have demonstrated that isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, as well as the oncogene KRAS, assumed more proliferative and invasive properties in vitro and in vivo. A separate body of studies implicates the role of various hydrogen sulfide (H2S)-producing enzymes in the pathogenesis of colon cancer. The current study was designed to determine if the sequential mutations in the above pathway affect the expression of various H2S producing enzymes. Western blotting was used to detect the expression of the H2S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), as well as several key enzymes involved in H2S degradation such as thiosulfate sulfurtransferase/rhodanese (TST), ethylmalonic encephalopathy 1 protein/persulfide dioxygenase (ETHE1) and sulfide-quinone oxidoreductase (SQR). H2S levels were detected by live-cell imaging using a fluorescent H2S probe. Bioenergetic parameters were assessed by Extracellular Flux Analysis; markers of epithelial-mesenchymal transition (EMT) were assessed by Western blotting. The results show that the consecutive mutations produced gradual upregulations in CBS expression—in particular in its truncated (45 kDa) form—as well as in CSE and 3-MST expression. In more advanced organoids, when the upregulation of H2S-producing enzymes coincided with the downregulation of the H2S-degrading enzyme SQR, increased H2S generation was also detected. This effect coincided with the upregulation of cellular bioenergetics (mitochondrial respiration and/or glycolysis) and an upregulation of the Wnt/β-catenin pathway, a key effector of EMT. Thus sequential mutations in colon epithelial cells according to the Vogelstein sequence are associated with a gradual upregulation of multiple H2S generating pathways, which, in turn, translates into functional changes in cellular bioenergetics and dedifferentiation, producing more aggressive and more invasive colon cancer phenotypes. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

18 pages, 3120 KiB  
Article
Genes Responsible for H2S Production and Metabolism Are Involved in Learning and Memory in Drosophila melanogaster
by Olga G. Zatsepina, Lyubov N. Chuvakova, Ekaterina A. Nikitina, Alexander P. Rezvykh, Alexey S. Zakluta, Svetlana V. Sarantseva, Nina V. Surina, Alexander L. Ksenofontov, Ludmila A. Baratova, Viktoria Y. Shilova and Michael B. Evgen’ev
Biomolecules 2022, 12(6), 751; https://doi.org/10.3390/biom12060751 - 26 May 2022
Cited by 4 | Viewed by 3411
Abstract
The gasotransmitter hydrogen sulfide (H2S) produced by the transsulfuration pathway (TSP) is an important biological mediator, involved in many physiological and pathological processes in multiple higher organisms, including humans. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) enzymes play a central role in H [...] Read more.
The gasotransmitter hydrogen sulfide (H2S) produced by the transsulfuration pathway (TSP) is an important biological mediator, involved in many physiological and pathological processes in multiple higher organisms, including humans. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) enzymes play a central role in H2S production and metabolism. Here, we investigated the role of H2S in learning and memory processes by exploring several Drosophila melanogaster strains with single and double deletions of CBS and CSE developed by the CRISPR/Cas9 technique. We monitored the learning and memory parameters of these strains using the mating rejection courtship paradigm and demonstrated that the deletion of the CBS gene, which is expressed predominantly in the central nervous system, and double deletions completely block short- and long-term memory formation in fruit flies. On the other hand, the flies with CSE deletion preserve short- and long-term memory but fail to exhibit long-term memory retention. Transcriptome profiling of the heads of the males from the strains with deletions in Gene Ontology terms revealed a strong down-regulation of many genes involved in learning and memory, reproductive behavior, cognition, and the oxidation–reduction process in all strains with CBS deletion, indicating an important role of the hydrogen sulfide production in these vital processes. Full article
Show Figures

Graphical abstract

18 pages, 2848 KiB  
Article
Uremic Toxin Indoxyl Sulfate Impairs Hydrogen Sulfide Formation in Renal Tubular Cells
by Chien-Lin Lu, Chun-Hou Liao, Wen-Bin Wu, Cai-Mei Zheng, Kuo-Cheng Lu and Ming-Chieh Ma
Antioxidants 2022, 11(2), 361; https://doi.org/10.3390/antiox11020361 - 11 Feb 2022
Cited by 6 | Viewed by 2490
Abstract
Hydrogen sulfide (H2S) was the third gasotransmitter to be recognized as a cytoprotectant. A recent study demonstrated that exogenous supplementation of H2S ameliorates functional insufficiency in chronic kidney disease (CKD). However, how the H2S system is impaired [...] Read more.
Hydrogen sulfide (H2S) was the third gasotransmitter to be recognized as a cytoprotectant. A recent study demonstrated that exogenous supplementation of H2S ameliorates functional insufficiency in chronic kidney disease (CKD). However, how the H2S system is impaired by CKD has not been elucidated. The uremic toxin indoxyl sulfate (IS) is known to accumulate in CKD patients and harm the renal tubular cells. This study therefore treated the proximal tubular cells, LLC-PK1, with IS to see how IS affects H2S formation. Our results showed that H2S release from LLC-PK1 cells was markedly attenuated by IS when compared with control cells. The H2S donors NaHS and GYY-4137 significantly attenuated IS-induced tubular damage, indicating that IS impairs H2S formation. Interestingly, IS downregulated the H2S-producing enzymes cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), and these effects could be reversed by inhibition of the IS receptor, aryl hydrocarbon receptor (AhR). As transcription factor specificity protein 1 (Sp1) regulates the gene expression of H2S-producing enzymes, we further showed that IS significantly decreased the DNA binding activity of Sp1 but not its protein expression. Blockade of AhR reversed low Sp1 activity caused by IS. Moreover, exogenous H2S supplementation attenuated IS-mediated superoxide formation and depletion of the cellular glutathione content. These results clearly indicate that IS activates AhR, which then attenuates Sp1 function through the regulation of H2S-producing enzyme expression. The attenuation of H2S formation contributes to the low antioxidant defense of glutathione in uremic toxin-mediated oxidative stress, causing tubular cell damage. Full article
(This article belongs to the Special Issue Role of Hydrogen Sulfide in Health and Disease)
Show Figures

Figure 1

20 pages, 1209 KiB  
Review
The Role of the Transsulfuration Pathway in Non-Alcoholic Fatty Liver Disease
by Mikkel Parsberg Werge, Adrian McCann, Elisabeth Douglas Galsgaard, Dorte Holst, Anne Bugge, Nicolai J. Wewer Albrechtsen and Lise Lotte Gluud
J. Clin. Med. 2021, 10(5), 1081; https://doi.org/10.3390/jcm10051081 - 5 Mar 2021
Cited by 44 | Viewed by 15801
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a [...] Read more.
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approximately 25% of the global population may have NAFLD. NAFLD is associated with obesity and metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfuration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocysteine will also be increased due to impairment of the folate and methionine cycles. The key enzymes of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in animal models. A causative link between the TSP and NAFLD has not been established. However, dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to NAFLD may reveal mechanisms involved in the development and progression of NAFLD. Full article
(This article belongs to the Special Issue Challenges in Nonalcoholic Steatohepatitis)
Show Figures

Figure 1

24 pages, 346 KiB  
Review
Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract
by Sudha B. Singh and Henry C. Lin
Microorganisms 2015, 3(4), 866-889; https://doi.org/10.3390/microorganisms3040866 - 12 Nov 2015
Cited by 203 | Viewed by 19948
Abstract
Hydrogen sulfide (H2S) is a Janus-faced molecule. On one hand, several toxic functions have been attributed to H2S and exposure to high levels of this gas is extremely hazardous to health. On the other hand, H2S delivery [...] Read more.
Hydrogen sulfide (H2S) is a Janus-faced molecule. On one hand, several toxic functions have been attributed to H2S and exposure to high levels of this gas is extremely hazardous to health. On the other hand, H2S delivery based clinical therapies are being developed to combat inflammation, visceral pain, oxidative stress related tissue injury, thrombosis and cancer. Since its discovery, H2S has been found to have pleiotropic effects on physiology and health. H2S is a gasotransmitter that exerts its effect on different systems, such as gastrointestinal, neuronal, cardiovascular, respiratory, renal, and hepatic systems. In the gastrointestinal tract, in addition to H2S production by mammalian cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), H2S is also generated by the metabolic activity of resident gut microbes, mainly by colonic Sulfate-Reducing Bacteria (SRB) via a dissimilatory sulfate reduction (DSR) pathway. In the gut, H2S regulates functions such as inflammation, ischemia/ reperfusion injury and motility. H2S derived from gut microbes has been found to be associated with gastrointestinal disorders such as ulcerative colitis, Crohn’s disease and irritable bowel syndrome. This underscores the importance of gut microbes and their production of H2S on host physiology and pathophysiology. Full article
(This article belongs to the Special Issue Host-Gut Microbiota Metabolic Interactions)
Show Figures

Figure 1

Back to TopTop