Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = cumin aldehyde

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1227 KiB  
Article
Investigation of Essential Oil from Cumin (Cuminum cyminum) Seeds and Selected Terpenes as Repellents Against Adult Female Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) Sand Flies
by Maia Tsikolia, Panagiota Tsafrakidou, Michael Miaoulis, Andrew Y. Li, Dawn Gundersen-Rindal and Alexandra Chaskopoulou
Insects 2025, 16(6), 599; https://doi.org/10.3390/insects16060599 - 6 Jun 2025
Viewed by 676
Abstract
Leishmaniasis, a parasitic disease transmitted by sand flies, poses a significant global health threat. Chemical repellents and insecticides are widely used for protection, but prolonged use has led to resistance, reduced efficacy, and environmental concerns, emphasizing the need for new repellent compounds, ideally [...] Read more.
Leishmaniasis, a parasitic disease transmitted by sand flies, poses a significant global health threat. Chemical repellents and insecticides are widely used for protection, but prolonged use has led to resistance, reduced efficacy, and environmental concerns, emphasizing the need for new repellent compounds, ideally from sustainable sources. This study investigated the chemical composition and repellent properties of cumin seed essential oil (EO) from Greece against Phlebotomus papatasi. Gas chromatography–mass spectrometry (GC-MS) identified five major constituents, including cumin aldehyde (27.0%), β-pinene (11.4%), and γ-terpinene (10.8%). In addition to cumin seed EO and its major constituents, octanol, and 1-octen-3-ol were tested for comparison, along with transfluthrin and DEET as standard repellents. Using a static air repellency bioassay, cumin seed EO, cumin aldehyde, and octanol exhibited strong spatial repellency (EC50 of 0.34, 0.07, and 0.60 μg/cm2 respectively) comparable to transfluthrin (EC50 of 0.04 μg/cm2) at 1 h, and contact repellency, both lasting up to 3 h. This is the first study to evaluate cumin seed EO and cumin aldehyde against sand flies, highlighting their potential as alternatives to conventional repellents. Further research is needed to explore their applicability in vector control strategies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

14 pages, 4308 KiB  
Article
Spectroscopic and Molecular Docking Investigation on the Interaction of Cumin Components with Plasma Protein: Assessment of the Comparative Interactions of Aldehyde and Alcohol with Human Serum Albumin
by Mohd Sajid Ali, Md Tabish Rehman, Hamad Al-Lohedan and Mohamed Fahad AlAjmi
Int. J. Mol. Sci. 2022, 23(8), 4078; https://doi.org/10.3390/ijms23084078 - 7 Apr 2022
Cited by 21 | Viewed by 2748
Abstract
The interaction of the important plasma protein, human serum albumin (HSA), with two monoterpenes found in cumin oil, i.e., cuminaldehyde (4-isopropylbenzaldehyde) and cuminol (4-isopropylbenzyl alcohol), was studied in this paper. Both experimental and computational methods were utilized to understand the mechanism of binding. [...] Read more.
The interaction of the important plasma protein, human serum albumin (HSA), with two monoterpenes found in cumin oil, i.e., cuminaldehyde (4-isopropylbenzaldehyde) and cuminol (4-isopropylbenzyl alcohol), was studied in this paper. Both experimental and computational methods were utilized to understand the mechanism of binding. The UV absorption profile of HSA changes in the presence of both cuminaldehyde and cuminol, due to the interaction between HSA with both monoterpenes. The intrinsic fluorescence intensity of HSA was also quenched on the sequential addition of both ligands, due to change in the microenvironment of the fluorophore present in the former. Quenching of HSA by cuminaldehyde was much higher in comparison to that in the presence of cuminol. Fluorescence quenching data were analyzed using modified Stern-Volmer and Lineweaver-Burk methods, which suggested that the binding mechanism was of a static type for both ligands. In both cases, the binding was favored by the domination of hydrophobic as well as hydrogen bonding/Van der Waals forces. Both ligands partially unfolded the secondary structure of HSA, although the effect of cuminaldehyde was more pronounced, as compared to cuminol. The preferred binding site of cuminaldehyde and cuminol inside HSA was also the same; namely, drug binding site 1, located in subdomain IIA. The study showed that cuminaldehyde binds strongly with albumin as compared to its alcohol counterpart, which is due to the more hydrophobic nature of the former. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

13 pages, 2363 KiB  
Article
Chemical Composition of Kickxia aegyptiaca Essential Oil and Its Potential Antioxidant and Antimicrobial Activities
by Ahmed M. Abd-ElGawad, Yasser A. El-Amier, Giuliano Bonanomi, Abd El-Nasser G. El Gendy, Abdallah M. Elgorban, Salman F. Alamery and Abdelsamed I. Elshamy
Plants 2022, 11(5), 594; https://doi.org/10.3390/plants11050594 - 23 Feb 2022
Cited by 23 | Viewed by 3462
Abstract
The exploration of new bioactive compounds from natural resources as alternatives to synthetic chemicals has recently attracted the attention of scientists and researchers. To our knowledge, the essential oil (EO) of Kickxia aegyptiaca has not yet been explored. Thus, the present study was [...] Read more.
The exploration of new bioactive compounds from natural resources as alternatives to synthetic chemicals has recently attracted the attention of scientists and researchers. To our knowledge, the essential oil (EO) of Kickxia aegyptiaca has not yet been explored. Thus, the present study was designed to explore the EO chemical profile of K. aegyptiaca for the first time, as well as evaluate its antioxidant and antibacterial activities, particularly the extracts of this plant that have been reported to possess various biological activities. The EO was extracted from the aerial parts via hydrodistillation and then characterized by gas chromatography-mass spectrometry (GC-MS). The extracted EO was tested for its antioxidant activity via the reduction in the free radicals, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). In addition, the EO was tested as an antibacterial mediator against eight Gram-negative and Gram-positive bacterial isolates. Forty-three compounds were identified in the EO of K. aegyptiaca, with a predominance of terpenoids (75.46%). Oxygenated compounds were the main class, with oxygenated sesquiterpenes attaining 40.42% of the EO total mass, while the oxygenated monoterpenes comprised 29.82%. The major compounds were cuminic aldehyde (21.99%), caryophyllene oxide (17.34%), hexahydrofarnesyl acetone (11.74%), ar-turmerone (8.51%), aromadendrene oxide (3.74%), and humulene epoxide (2.70%). According to the IC50 data, the K. aegyptiaca EO revealed considerable antioxidant activity, with IC50 values of 30.48 mg L−1 and 35.01 mg L−1 for DPPH and ABTS, respectively. In addition, the EO of K. aegyptiaca showed more substantial antibacterial activity against Gram-positive bacterial isolates compared to Gram-negative. Based on the minimum inhibitory concentration (MIC), the EO showed the highest activity against Escherichia coli and Bacillus cereus, with an MIC value of 0.031 mg mL1. The present study showed, for the first time, that the EO of K. aegyptiaca has more oxygenated compounds with substantial antioxidant and antibacterial activities. This activity could be attributed to the effect of the main compounds, either singular or synergistic. Thus, further studies are recommended to characterize the major compounds, either alone or in combination as antioxidants or antimicrobial agents, and evaluate their biosafety. Full article
Show Figures

Graphical abstract

15 pages, 326 KiB  
Article
Allelopathic Effects of Essential Oils on Seed Germination of Barley and Wheat
by Valtcho D. Zheljazkov, Ekaterina A. Jeliazkova and Tess Astatkie
Plants 2021, 10(12), 2728; https://doi.org/10.3390/plants10122728 - 11 Dec 2021
Cited by 21 | Viewed by 4631
Abstract
In this study, we evaluated the allelopathic effects of essential oils (EOs) from six different plant species, namely, lavender (Lavandula angustifolia), hyssop (Hyssopus officinalis), English thyme (Thymus vulgaris), lovage (Levisticum officinale), costmary (Chrysanthemum balsamita [...] Read more.
In this study, we evaluated the allelopathic effects of essential oils (EOs) from six different plant species, namely, lavender (Lavandula angustifolia), hyssop (Hyssopus officinalis), English thyme (Thymus vulgaris), lovage (Levisticum officinale), costmary (Chrysanthemum balsamita), and cumin (Cuminum cyminum), on seed germination and seedling growth of barley (Hordeum vulgare) and wheat (Triticum aestivum). The main constituents of the EOs of L. angustifolia were 47.0% linalool acetate and 28.4% linalool; H. officinalis’ main constituents were 39.8% cis-pinocamphone, 9.8% trans-pinocamphone, 11.4% β-pinene, and 7.5% β-phellandrene; T. vulgaris’ were 38.2% para-cymene, 25.6% thymol, and 13.6% γ-terpinene; L. officinale’s were 64.8% α-terpinyl acetate and 14.7% β-phellandrene; C. balsamita’s were 43.7% camphor, 32.4% trans-thujone, and 11.6% camphene; C. cyminum’s were 49.6% cumin aldehyde, 10.4% para-cymene, 11.6% α-terpinen-7-al, and 9.1% β-pinene. All six EOs exhibited an allelopathic effect and suppressed the seed germination and seedling development of wheat and barley; however, the concentrations that exhibited a suppressing effect were different among the plants. C. cyminum EO completely suppressed both barley and wheat germination at 10-, 30-, and 90-µL application rates, making it the most effective treatment among the tested EOs. C. balsamita’s and H. officinalis’ EOs at 30 and 90 µL application rates completely suppressed barley and wheat radicles per seed, radicle length (mm), seedling height (mm), and germination (%). L. angustifolia’s EOs at 30- and 90-µL and T. vulgaris’ EO at 90 µL application rates also completely suppressed barley and wheat radicles per seed, radicle length (mm), seedling height (mm), and germination (%). C. balsamita’s, H. officinalis’, L. angustifolia’s, and T. vulgaris’ EOs at a 10 µL application rate reduced barley radicle length, seedling height, and % germination relative to the control. Wheat seed germination % was completely suppressed by the application of L. angustifolia’s and T. vulgaris’ EOs at 30 and 90 µL, while T. vulgaris’ EO at 10 µL rate reduced the germination relative to the control. Interestingly, C. balsamita and H. officinalis at 10 µL did not reduce wheat germination; however, they did reduce the number of radicles per seed, radicle length (mm), seedling height (mm), germination (%), and vigor index. Furthermore, L. officinale’s EO reduced the measured indices (radicles per seed, radicle length, seedling height, and vigor index) at the 10, 30, and 90 µL application rates relative to the non-treated control; however, none of the application rates of L. officinale’s EO had a suppression effect on wheat germination. This study demonstrated the allelopathic effects of the EOs of six different herbal plant species on seed germination of barley and winter wheat. The results can be utilized in the development of commercial products for controlling pre-harvest sprouting of wheat and barley. Further research is needed to verify the results under field conditions. Full article
14 pages, 1568 KiB  
Article
The Use of Essential Oil and Hydrosol Extracted from Cuminum cyminum Seeds for the Control of Meloidogyne incognita and Meloidogyne javanica
by Iro Pardavella, Demetra Daferera, Theodoros Tselios, Panagiota Skiada and Ioannis Giannakou
Plants 2021, 10(1), 46; https://doi.org/10.3390/plants10010046 - 28 Dec 2020
Cited by 23 | Viewed by 3562
Abstract
The essential oil (EO) and hydrosol (HL) isolated from Cuminum cyminum (cumin) seeds were evaluated against the root-knot nematodes Meloidogyne incognita and M. javanica. The efficacy of extracts on the motility, hatching, and survival in soil of second-stage juveniles (J2s), and the [...] Read more.
The essential oil (EO) and hydrosol (HL) isolated from Cuminum cyminum (cumin) seeds were evaluated against the root-knot nematodes Meloidogyne incognita and M. javanica. The efficacy of extracts on the motility, hatching, and survival in soil of second-stage juveniles (J2s), and the activity on egg differentiation were tested. All J2s were paralyzed after immersion in the EO at 62.5 μL/L concentration for 96 h. Encouraging results were recorded using HL equal to or higher than 10% concentration for both Meloidogyne species tested. More than 70% paralyzed J2s were recorded after immersion for 48 h, while the percentage was increased to higher than 90% after 96 h of immersion. A clear effect on egg differentiation was observed after immersion in EO or HL. A significant decrease in egg differentiation was revealed at even low concentrations of EO while an evident decrease in egg differentiation was recorded after immersion of eggs in 50% HL dilution. Decreased hatching of M. incognita and M. javanica J2s was observed with the increase in concentration. The lowest numbers of hatched J2s were recorded when EO was used at 1000 and 2000 μL/L concentrations. A constant reduction in root-knot nematode J2 hatching was observed upon increasing the concentration of HL from 5% to 50%. The EO of C. cyminum is characterized by the presence of γ-terpinene-7-al (34.95%), cumin aldehydes (26.48), and α-terpinene-7-al (12.77%). The above constituents were observed in HL following the same order as that observed in EO. The components γ-terpinene (11.09%) and ο-cymene (6.56%) were also recorded in EO while they were absent in HL. Full article
Show Figures

Figure 1

Back to TopTop