Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

remove_circle_outline

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = crude oil tank bottom residues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 773 KiB  
Proceeding Paper
Valorization of Bottom Oil Sludge in Red Ceramics—Inertization of the Contained Heavy Metals in the Ceramic Matrix
by Xenofon Spiliotis, Dorothea Kasiteropoulou, Dimitra Kaffe, Dimitrios Christodoulou, George Banias and George Papapolymerou
Mater. Proc. 2021, 5(1), 6; https://doi.org/10.3390/materproc2021005006 - 28 Oct 2021
Viewed by 3058
Abstract
Among the wastes produced in a refinery are solids containing water, in particular: (i) bottom sludge accumulated in storage tanks and (ii) sludge agglomerated during the processing of crude oil. Potentially useful industrial secondary resources, co-processed with clays lead to the manufacturing of [...] Read more.
Among the wastes produced in a refinery are solids containing water, in particular: (i) bottom sludge accumulated in storage tanks and (ii) sludge agglomerated during the processing of crude oil. Potentially useful industrial secondary resources, co-processed with clays lead to the manufacturing of novel ceramic building products. Among the expected advantages, resulting to industrial symbiosis, is the inclusion of ashes and residual metals from the wastes within the ceramic structure, leading to the inertization of inorganic ingredients, through the thermal processing of clay to building ceramic products. Full article
(This article belongs to the Proceedings of International Conference on Raw Materials and Circular Economy)
Show Figures

Figure 1

27 pages, 6118 KiB  
Project Report
Applied Cleaning Methods of Oil Residues from Industrial Tanks
by Alexandros Chrysalidis and George Z. Kyzas
Processes 2020, 8(5), 569; https://doi.org/10.3390/pr8050569 - 11 May 2020
Cited by 18 | Viewed by 43702
Abstract
The oil industry is facing a major problem with the large amount of oil residue generated in the tanks that store and process crude oil or its products. Research has shown that the residues of petroleum sludge, which according to a sample from [...] Read more.
The oil industry is facing a major problem with the large amount of oil residue generated in the tanks that store and process crude oil or its products. Research has shown that the residues of petroleum sludge, which according to a sample from the Azzawiya oil refinery in Libya mainly consist of oil, water and solid residues in 42.8%, 2.9% and 55.2% respectively, result in the alteration of the product quality and reduced capacity of the tanks. The solution for this problem as well as the need for inspection and maintenance requires the removal of this oil sludge and the internal cleaning of the tanks. This report aims to review the applied clean-up methods available in the world market and to identify the most efficient, safest, most economical and most environmentally friendly cleaning process. It must be noted that until now, there is not any published work which presents the applied techniques. To accomplish this goal, a total of five manual, automatic and robotic cleaning systems were analyzed and evaluated according to their advantages and disadvantages. The results show that the MEGAMACS with sludge extractor automatic cleaning system with an output of 14.8 m3/h is the fastest cleaning system, while the MARTin where the presence of people inside the tank is not necessary at any stage is the safest. In terms of cleaning costs and environmental impact, the automated BLABO, COW and MEGAMACS systems as well as the MARTin robotic system are the most economical and environmentally friendly due to the closed cleaning circuit and the ability to recover up to 95% of the oil from the sludge, which is returned to the customer and the earnings cover the costs of cleaning. The conclusion drawn is that the current need in the oil industry, in the field of tank cleaning, is the use of high-efficiency automatic or robotic cleaning methods, which aim to reduce the tank downtime, without the need for staff entrance into a permit-required confined space and with the ability to recover up to 100% of the hydrocarbons present in the composition of the sludge. Full article
(This article belongs to the Special Issue Green Separation and Extraction Processes)
Show Figures

Figure 1

Back to TopTop