Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = creole avocado

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1495 KiB  
Article
Computer-Aided Exergy Analysis of a Creole Avocado Extractive-Based Biorefinery and Sustainable Utilization in Montes de Maria, Colombia
by Alejandra Fontalvo-Morales, Segundo Rojas-Flores and Ángel Darío González-Delgado
Sustainability 2025, 17(12), 5451; https://doi.org/10.3390/su17125451 - 13 Jun 2025
Viewed by 338
Abstract
Creole avocado is the second most widely produced and consumed variety of avocado globally. Due to its commercialization, limited studies have explored its potential for sustainable applications in biorefinery, particularly focusing on reusing the significant amount of waste generated during its consumption. This [...] Read more.
Creole avocado is the second most widely produced and consumed variety of avocado globally. Due to its commercialization, limited studies have explored its potential for sustainable applications in biorefinery, particularly focusing on reusing the significant amount of waste generated during its consumption. This research evaluates thermodynamic energy losses of a Creole avocado extractive-based biorefinery, which are of critical importance during the fruit valorization process to determine the efficiency and possibilities of optimization, as well as sustainability impacts, through an exergy balance using computer-aided process engineering. The proposed method utilizes the whole fruit to produce three primary bioproducts, with a focus on implementation in the Montes de María region of Colombia. Following the extended mass and energy balance, an in-depth exergetic analysis was conducted, revealing that all process stages exhibited an exergetic efficiency exceeding 50%. The irreversibilities of the process were calculated as 7763.74 MJ/h, the total waste exergy was 2924.42 MJ/h, and the exergy from industrial waste amounted to 7800.42 MJ/h. These findings highlight the potential for optimizing the sustainability of avocado-based production systems through computer-aided analysis as an effective method. This approach accurately identifies exergy losses at each stage, providing precise numerical data and graphical representations. Additionally, it underscores not only the environmental benefits but also the contribution of these systems to enhancing energy efficiency in agro-industrial applications. Full article
Show Figures

Figure 1

15 pages, 1608 KiB  
Article
Inherent Safety Index Evaluation of an Extractive-Based Creole-Antillean Avocado Biorefinery in Montes De María, Colombia
by Tamy Carolina Herrera-Rodríguez and Ángel Darío González-Delgado
Sustainability 2025, 17(1), 168; https://doi.org/10.3390/su17010168 - 29 Dec 2024
Viewed by 900
Abstract
In Colombia, different varieties of avocados are produced. In the Montes de María region, Creole-Antillean avocados are grown, but part of the production is lost due to the presence of fungi and pests, lacking marketing strategies, poor road conditions, and other factors. For [...] Read more.
In Colombia, different varieties of avocados are produced. In the Montes de María region, Creole-Antillean avocados are grown, but part of the production is lost due to the presence of fungi and pests, lacking marketing strategies, poor road conditions, and other factors. For this reason, we propose utilizing avocados under the concept of biorefinery to produce value-added products such as bio-oil, biopesticide, and chlorophyll from the pulp, seed, and peel, respectively. The objective is to evaluate the safety of establishing an avocado biorefinery by determining the inherent safety index of the chemical processes. The process inherent safety index is a methodology that allows the assessment of processes in the conceptual design stages. This technique identifies the characteristics of the process by determining the properties of the chemical substances, maximum operating conditions, types of equipment, construction materials, reported accidents, and other relevant factors. In the present study, the safety performance of the process is observed. A total inherent safety index of 18 points was obtained, indicating that the process is viable from a safety perspective if we compare it to the permitted limit of 24 points. This is because the process does not represent a considerable safety hazard, though some precautions must be taken due to the maximum operating temperature of 81 °C. Additionally, the chemical substances (methanol, acetone, and ethanol) necessary for obtaining bio-oil, chlorophyll, and biopesticide must be handled appropriately. Full article
(This article belongs to the Special Issue Advances in Waste Biomass and Environmental Sustainability)
Show Figures

Figure 1

20 pages, 1707 KiB  
Article
Assessing the Environmental Impacts of the Valorization of Creole-Antillean Avocado via an Extractive-Based Biorefinery in the Montes de María Region
by Stefany A. Valdez-Valdes, Lesly P. Tejeda-Benitez and Ángel D. González-Delgado
Sustainability 2024, 16(24), 11057; https://doi.org/10.3390/su162411057 - 17 Dec 2024
Viewed by 797
Abstract
In recent years, the environmental evaluation of biorefineries has become critical for ensuring sustainable practices in bio-based production systems. This study focuses on the application of the Waste Reduction (WAR) Algorithm to assess the environmental impacts of an Extractive-based Creole-Antillean Avocado Biorefinery located [...] Read more.
In recent years, the environmental evaluation of biorefineries has become critical for ensuring sustainable practices in bio-based production systems. This study focuses on the application of the Waste Reduction (WAR) Algorithm to assess the environmental impacts of an Extractive-based Creole-Antillean Avocado Biorefinery located in Northern Colombia, aimed at producing bio-oil, chlorophyll, and biopesticide from avocado pulp, peel, and seed, respectively. The environmental impacts were evaluated using the WAR algorithm, which quantifies the potential environmental impacts (PEI) of different process streams. The following four scenarios were developed: (1) considering only waste, (2) including waste and products, (3) including waste and energy sources, and (4) incorporating waste, products, and energy consumption. This study analyzed global impacts focusing on atmospheric and toxicological categories, with a detailed assessment of the most critical scenario. The results indicated that Scenario 4 had the highest PEI, particularly in the atmospheric and toxicological categories, driven by emissions of volatile organic compounds (VOCs), greenhouse gases (GHGs), and the presence of heavy metals. However, the avocado biorefinery process demonstrated a net reduction in overall environmental impacts, with negative PEI generation rates across all scenarios, suggesting that the biorefinery transforms high-impact substances into products with lower global impact potential. Energy consumption emerged as a significant contributor to environmental impacts, particularly in acidification potential (AP) and Atmospheric Toxicity Potential (ATP). Using natural gas as an energy source had a relatively lower environmental impact compared to coal and liquid fuels, emphasizing the need to optimize energy use in biorefinery design to improve environmental performance. Full article
Show Figures

Figure 1

20 pages, 2380 KiB  
Article
Process Simulation and Technical Evaluation Using Water-Energy-Product (WEP) Analysis of an Extractive-Based Biorefinery of Creole-Antillean Avocado Produced in the Montes De María
by Sofía García-Maza, Tamy C. Herrera-Rodríguez and Ángel Darío González-Delgado
Sustainability 2024, 16(21), 9575; https://doi.org/10.3390/su16219575 - 3 Nov 2024
Cited by 2 | Viewed by 1375
Abstract
The annual increase in the world’s population significantly contributes to recent climate change and variability. Therefore, researchers, engineers, and professionals in all fields must integrate sustainability criteria into their decision-making. These criteria aim to minimize the environmental, social, economic, and energy impacts of [...] Read more.
The annual increase in the world’s population significantly contributes to recent climate change and variability. Therefore, researchers, engineers, and professionals in all fields must integrate sustainability criteria into their decision-making. These criteria aim to minimize the environmental, social, economic, and energy impacts of human activities and industrial processes, helping mitigate climate change. This research focuses on developing scalable technology for the comprehensive use of avocados, adhering to sustainability principles. This work presents the modeling, simulation, and the WEP (Water-Energy-Product) technical evaluation of the process for obtaining bio-oil, chlorophyll, and biopesticide from the Creole-Antillean avocado. For this, the extractive-based biorefinery data related to water, energy, and products are taken from the material balance based on experimental results and process simulation. Then, eight process parameters are calculated, and eleven technical indicators are determined. Later, the extreme technical limitations for every indicator are demarcated, and an evaluation of the performance of the indicators is carried out. Results showed that the process has a high execution in aspects such as fractional water cost (TCF) and energy cost (TCE), as well as solvent reuse during extraction processes (SRI) and production yield, noting that the mentioned indicators are above 80%. In contrast, the metrics related to water management (FWC) and specific energy (ESI) showed the lowest performance. These discoveries support the use of optimization techniques like mass process integration. The energy-related indicators reveal that the process presents both benefits and drawbacks. One of the drawbacks is the energy source due to the high demand for electrical energy in the process, compared to natural gas. The specific energy intensity indicator (ESI) showed an intermediate performance (74%), indicating that the process consumes high energy. This indicator enables us to highlight that we can find energy aspects that require further study; for this reason, it is suitable to say that there is potential to enhance the energy efficiency of the process by applying energy integration methods. Full article
(This article belongs to the Special Issue Upcycling Biowaste into Biobased Products)
Show Figures

Figure 1

24 pages, 3453 KiB  
Article
Alternatives for the Valorization of Avocado Waste Generated in the Different Links of the Value Chain Based on a Life-Cycle Analysis Approach
by Maria Camila Garcia-Vallejo, Tatiana Agudelo Patiño, Jhonny Alejandro Poveda-Giraldo, Sara Piedrahita-Rodríguez and Carlos Ariel Cardona Alzate
Agronomy 2023, 13(9), 2229; https://doi.org/10.3390/agronomy13092229 - 25 Aug 2023
Cited by 12 | Viewed by 4172
Abstract
This work evaluates the sustainability of small-scale biorefineries as a potential enterprise alternative to be introduced in rural areas based on experimental and simulation data. Four scenarios were evaluated: the first scenario involves the production of guacamole, the second involves the production of [...] Read more.
This work evaluates the sustainability of small-scale biorefineries as a potential enterprise alternative to be introduced in rural areas based on experimental and simulation data. Four scenarios were evaluated: the first scenario involves the production of guacamole, the second involves the production of animal feed, and the third and fourth scenarios involve the extraction of bioactive compounds and the production of avocado oil or animal feed, respectively. In addition, all scenarios produce biogas and fertilizer. Each of the scenarios were evaluated considering the technical, economic, environmental, and social aspects. As a main result, the first scenario showed the lowest operating and investment costs, as well as the lowest economic profitability (profit margin 35%). On the other hand, the third and fourth scenarios present the highest investment and operating expenses (OpEx USD 6.2 million per year and CapEx USD 1.0 million), but their profit margins are in the 60–70% range. Furthermore, a life-cycle assessment (LCA) was carried out and allows inferring that the transformer link presents the highest environmental impact of the entire value chain and that the carbon footprint for all scenarios ranges between 1.01–2.41 kg CO2 eq per kg avocado. Similarly, the social impact methodology shows that the proposed scenarios do not present any social risk. Thus, the biorefinery for animal feed, bioactive compounds, biogas, and fertilizer was selected as the best option to be implemented in Caldas. Full article
(This article belongs to the Special Issue Pretreatment and Bioconversion of Crop Residues II)
Show Figures

Figure 1

Back to TopTop