Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = crawler construction machinery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3544 KiB  
Article
An Adaptive Path Tracking Controller with Dynamic Look-Ahead Distance Optimization for Crawler Orchard Sprayers
by Xu Wang, Bo Zhang, Xintong Du, Xinkang Hu, Chundu Wu and Jianrong Cai
Actuators 2025, 14(3), 154; https://doi.org/10.3390/act14030154 - 19 Mar 2025
Viewed by 665
Abstract
Based on the characteristics of small agricultural machinery in terms of flexibility and high efficiency when operating in small plots of hilly and mountainous areas, as well as the demand for improving the automation and intelligence levels of agricultural machinery, this paper conducted [...] Read more.
Based on the characteristics of small agricultural machinery in terms of flexibility and high efficiency when operating in small plots of hilly and mountainous areas, as well as the demand for improving the automation and intelligence levels of agricultural machinery, this paper conducted research on the path tracking control of the automatic navigation operation of a crawler sprayer. Based on the principles of the kinematic model and the position prediction model of the agricultural machinery chassis, a pure pursuit controller based on adaptive look-ahead distance was designed for the tracked motion chassis. Using a lightweight crawler sprayer as the research platform, integrating onboard industrial control computers, sensors, communication modules, and other hardware, an automatic navigation operation system was constructed, achieving precise control of the crawler sprayer during the path tracking process. Simulation test results show that the path tracking control method based on adaptive look-ahead distance has the characteristics of smooth control and small steady-state error. Field tests indicate that the crawler sprayer exhibits small deviations during path tracking, with an average absolute error of 2.15 cm and a maximum deviation of 4.08 cm when operating at a speed of 0.7 m/s. In the line-following test, with initial position deviations of 0.5 m, 1.0 m, and 1.5 m, the line-following times were 7.45 s, 11.91 s, and 13.66 s, respectively, and the line-following distances were 5.21 m, 8.34 m, and 9.56 m, respectively. The maximum overshoot values were 6.4%, 10.5%, and 12.6%, respectively. The autonomous navigation experiments showed a maximum deviation of 5.78 cm and a mean absolute error of 2.69 cm. The proportion of path deviations within ±5 cm and ±10 cm was 97.32% and 100%, respectively, confirming the feasibility of the proposed path tracking control method. This significantly enhanced the path tracking performance of the crawler sprayer while meeting the requirements for autonomous plant protection spraying operations. Full article
(This article belongs to the Special Issue Modeling and Nonlinear Control for Complex MIMO Mechatronic Systems)
Show Figures

Figure 1

17 pages, 3972 KiB  
Article
Design of an Automatic Navigation and Operation System for a Crawler-Based Orchard Sprayer Using GNSS Positioning
by Binbin Yue, Zhigang Zhang, Wenyu Zhang, Xiwen Luo, Guocheng Zhang, Haixiang Huang, Xinluo Wu, Kaiyuan Bao and Mingda Peng
Agronomy 2024, 14(2), 271; https://doi.org/10.3390/agronomy14020271 - 26 Jan 2024
Cited by 8 | Viewed by 2046
Abstract
In order to enhance the efficiency of agricultural machinery in orchard rows and minimize harm to personnel caused by pesticide spraying, this study developed a GNSS-based (Global Navigation Satellite System) automatic navigation driving system for tracked orchard sprayers. The tracked sprayer was used [...] Read more.
In order to enhance the efficiency of agricultural machinery in orchard rows and minimize harm to personnel caused by pesticide spraying, this study developed a GNSS-based (Global Navigation Satellite System) automatic navigation driving system for tracked orchard sprayers. The tracked sprayer was used as a platform for this research. We constructed both a crawler hydraulic platform and spraying working parts based on orchard operation requirements. Additionally, we designed the hydraulic and electrical sub-control process of the crawler platform. By utilizing the motion model of the tracked mobile platform, we designed a linear path tracking control method using position deviation and heading deviation as state quantities. This allows the research platform to automatically initiate and terminate, travel in a straight line between rows, and complete spraying operations. Experimental verification confirmed that the tracked sprayer designed in this study successfully achieves automatic driving. The best automatic driving performance is achieved at a speed of 1.0 m/s. When the sprayer’s speed is 1.2 m/s, the maximum value of the straight-line path tracking accuracy of the platform’s automatic driving is better than 5.6 cm, with a standard deviation of 2.8 cm. This system effectively meets the requirements of automatic operation for an automatic spraying machine, thereby establishing a foundation for the implementation of automatic spraying operations in orchards. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

24 pages, 4538 KiB  
Article
A Pure Electric Driverless Crawler Construction Machinery Walking Method Based on the Fusion SLAM and Improved Pure Pursuit Algorithms
by Jiangdong Wu, Haoling Ren, Tianliang Lin, Yu Yao, Zhen Fang and Chang Liu
Sensors 2023, 23(18), 7784; https://doi.org/10.3390/s23187784 - 10 Sep 2023
Cited by 2 | Viewed by 1710
Abstract
Driverless technology refers to the technology that vehicles use to drive independently with the help of driverless system under the condition of unmanned intervention. The working environment of construction machinery is bad, and the working conditions are complex. The use of driverless technology [...] Read more.
Driverless technology refers to the technology that vehicles use to drive independently with the help of driverless system under the condition of unmanned intervention. The working environment of construction machinery is bad, and the working conditions are complex. The use of driverless technology can greatly reduce the risk of driver operation, reduce labor costs and improve economic benefits.Aiming at the problem of the GPS positioning signal in the working environment of construction machinery being weak and not able to achieve accurate positioning, this paper uses the fusion SLAM algorithm based on improved NDT to realize the real-time positioning of the whole vehicle through reconstruction of the scene. Considering that the motion characteristics of crawler construction machinery are different from those of ordinary passenger cars, this paper improves the existing pure pursuit algorithm. Simulations and real vehicle tests show that the algorithm combined with the fusion SLAM algorithm can realize the motion control of driverless crawler construction machinery well, complete the tracking of the set trajectory perfectly and have high robustness. Considering that there is no mature walking method of driverless crawler construction machinery for reference, the research of this paper will lay a foundation for the development of driverless crawler construction machinery. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

Back to TopTop