Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = cotton stalk-modified biochar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5355 KB  
Article
Effect of Cotton Stalk Biochar Content on the Properties of Cotton Stalk and Residual Film Composites
by Zhipeng Song, Xiaoyun Lian, Junhui Ran, Xuan Zheng, Xufeng Wang and Xiaoqing Lian
Agriculture 2025, 15(12), 1243; https://doi.org/10.3390/agriculture15121243 - 7 Jun 2025
Cited by 3 | Viewed by 1790
Abstract
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem [...] Read more.
This study aims to improve the performance of wood–plastic composites (WPCs) composed of cotton stalk powder and residual film particles. Additionally, it aims to promote the efficient utilization of cotton stalk biochar. The composites were prepared using modified cotton stalk biochar and xylem powder as the matrix, maleic anhydride grafted high-density polyethylene (MA-HDPE) as the coupling agent, and polyethylene (PE) residual film particles as the filler. The WPCs were fabricated through melt blending using a twin-screw extruder. Mechanical properties were evaluated using a universal testing machine and texture analyzer, Shore D hardness was measured using a durometer, and microstructure was analyzed using a high-resolution digital optical microscope. A systematic investigation was conducted on the effect of biochar content on material properties. The results indicated that modified biochar significantly enhanced the mechanical and thermal properties of the WPCs. At a biochar content of 80%, the material achieved optimal performance, with a hardness of 57.625 HD, a bending strength of 463.159 MPa, and a tensile strength of 13.288 MPa. Additionally, thermal conductivity and thermal diffusivity decreased to 0.174 W/(m·K) and 0.220 mm2/s, respectively, indicating improved thermal insulation properties. This research provides a novel approach for the high-value utilization of cotton stalks and residual films, offering a potential solution to reduce agricultural waste pollution in Xinjiang and contributing to the development of low-cost and high-performance WPCs with wide-ranging applications. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

15 pages, 2052 KB  
Article
The Concurrent Application of Phosphogypsum and Modified Biochar as Soil Amendments Influence Sandy Soil Quality and Wheat Productivity
by Mohssen Elbagory, Eman M. Shaker, Sahar El-Nahrawy, Alaa El-Dein Omara and Tamer H. Khalifa
Plants 2024, 13(11), 1492; https://doi.org/10.3390/plants13111492 - 28 May 2024
Cited by 12 | Viewed by 2919
Abstract
Sandy soil covers a significant portion of Egypt’s total land area, representing a crucial agricultural resource for future food security and economic growth. This research adopts the hypothesis of maximizing the utilization of secondary products for soil improvement to reduce ecosystem pollution. The [...] Read more.
Sandy soil covers a significant portion of Egypt’s total land area, representing a crucial agricultural resource for future food security and economic growth. This research adopts the hypothesis of maximizing the utilization of secondary products for soil improvement to reduce ecosystem pollution. The study focuses on assessing the impact of combining phosphogypsum and modified biochar as environmentally friendly soil amendments on loamy sand soil quality parameters such as soil organic carbon, cation exchange capacity, nutrient levels, and wheat yield. The treatments were T1: the recommended NPK fertilizer (control); T2: 2.5 kg phosphogypsum m−2 soil; T3: 2.5 kg rice straw biochar m−2 soil; T4: 2.5 kg cotton stalk biochar m−2 soil; T5: 2.5 kg rice-straw-modified biochar m−2 soil; T6: 2.5 kg cotton-stalk-modified biochar m−2 soil; and T7 to T10: mixed phosphogypsum and biochar treatments. The results revealed that the combined use of phosphogypsum and modified cotton stalk biochar (T10) significantly enhanced soil organic carbon (SOC) by 73.66% and 99.46% in both seasons, the soil available N both seasons by 130.12 and 161.45%, the available P by 89.49% and 102.02%, and the available K by 39.84 and 70.45% when compared to the control treatment. Additionally, this treatment led to the highest grain yield of wheat (2.72 and 2.92 Mg ha−1), along with a significant increase in straw yield (52.69% and 59.32%) compared to the control treatment. Overall, the findings suggest that the combined use of phosphogypsum and modified biochar, particularly cotton-stalk biochar, holds promise for improving loamy sand-soil quality and wheat productivity. Full article
Show Figures

Figure 1

21 pages, 1919 KB  
Article
Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils
by Mahmoud El-Sharkawy, Ahmed H. El-Naggar, Arwa Abdulkreem AL-Huqail and Adel M. Ghoneim
Sustainability 2022, 14(13), 8190; https://doi.org/10.3390/su14138190 - 5 Jul 2022
Cited by 47 | Viewed by 6122
Abstract
Soil salinity and sodicity is a potential soil risk and a major reason for reduced soil productivity in many areas of the world. This study was conducted to investigate the effect of different biochar raw materials and the effects of acid-modified biochar on [...] Read more.
Soil salinity and sodicity is a potential soil risk and a major reason for reduced soil productivity in many areas of the world. This study was conducted to investigate the effect of different biochar raw materials and the effects of acid-modified biochar on alleviating abiotic stresses from saline-sodic soil and its effect on biochemical properties of maize and wheat productivity. A field experiment was conducted as a randomized complete block design during the seasons of 2019/2020, with five treatments and three replicates: untreated soil (CK), rice straw biochar (RSB), cotton stalk biochar (CSB), rice straw-modified biochar (RSMB), and cotton stalk-modified biochar (CSMB). FTIR and X-ray diffraction patterns indicated that acid modification of biochar has potential effects for improving its properties via porous functions, surface functional groups and mineral compositions. The CSMB treatment enhanced the soil’s physical and chemical properties and porosity via EC, ESP, CEC, SOC and BD by 28.79%, 20.95%, 11.49%, 9.09%, 11.51% and 12.68% in the upper 0–20 cm, respectively, compared to the initial properties after the second season. Soil-available N, P and K increased with modified biochar treatments compared to original biochar types. Data showed increases in grain/straw yield with CSMB amendments by 34.15% and 29.82% for maize and 25.11% and 15.03% for wheat plants, respectively, compared to the control. Total N, P and K contents in both maize and wheat plants increased significantly with biochar application. CSMB recorded the highest accumulations of proline contents and SOD, POD and CAT antioxidant enzyme activity. These results suggest that the acid-modified biochar can be considered an eco-friendly, cheaper and effective choice in alleviating abiotic stresses from saline-sodic soil and positively effects maize and wheat productivity. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

Back to TopTop